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Abstract8

Outcomes of interest to demographers—fertility; health; education—are the product of both9

an individual’s genetic makeup and his or her social environment. Yet Gene ⇥ Environment10

research (GxE) currently deploys a limited toolkit on the genetic side to study gene-environment11

interplay: polygenic scores (PGS, or what we call mPGS) that reflect the influence of genetics on12

levels of an outcome. The purpose of the present paper is to develop a genetic summary measure13

better suited for GxE research. We develop what we call variance polygenic scores (vPGS), or14

polygenic scores that reflect genetic contributions to plasticity in outcomes. The first part of the15

analysis uses the UK Biobank (N ⇠ 326,000 in the training set) and the Health and Retirement16

Study (HRS) to compare four approaches for constructing polygenic scores for plasticity. The17

results show that widely-used methods for discovering which genetic variants a↵ect outcome18

variability fail to serve as distinctive new tools for GxE. Then, using the polygenic scores that19

do capture distinctive genetic contributions to plasticity, we analyze heterogeneous e↵ects of a20

UK education reform on health and educational attainment. The results show the properties of21

a new tool useful for population scientists studying the interplay of nature and nurture and for22

population-based studies that are releasing polygenic scores to applied researchers.23

Keywords: Gene-environment interactions; BMI; education; UK Biobank; HRS24
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1 Introduction25

1.1 The growth of using genome-wide measures to study genetic moderation of26

environments27

A wide range of research has shown how outcomes of interest to demographers—e..g, fertility; ed-28

ucational attainment; diseases with marked disparities such as obesity—are influenced by both an29

individual’s genetic makeup and his or her social environment. In turn, this research program,30

also called gene ⇥ environment (G⇥E) research, has undergone a large shift in how researchers31

summarize genetic variation.32

Earlier research focused on how single or small sets of genetic variants moderated social en-33

vironments to a↵ect outcomes. These include studies of how polymorphisms in specific genes like34

MAOA, or the promoter region of 5-HTTP, moderate social conditions like stressful childhood ex-35

periences or parental abuse (e.g., Guo et al., 2008) (for a review, see Seabrook and Avison (2010)).36

Two developments led researchers to abandon studying how small sets of genetic variants mod-37

erate environments. First was the failure of many single gene G⇥E studies to replicate (Duncan and38

Keller, 2011; Keller, 2014; Border et al., 2019). Second was growing evidence that most outcomes39

of interest to social and behavioral scientists—educational attainment; body mass index (BMI);40

depression—are “polygenic,” that is, the result of small contributions of many variants across the41

genome, rather than “monogenic”(Boyle et al., 2017). As a result, researchers have moved away42

from studying how single genes or small sets of genes moderate environments to using polygenic43

scores (PGS) that summarize genome-wide contributions. As Section 1.3 shows, PGS have become44

the workhorse tool that social scientists use when studying genetic moderation of environments.45

As a result, large social science cohort studies—the Health and Retirement Study (Ware et al.,46

2018); the National Longitudinal Study of Adolescent to Adult Health (Braudt and Harris, 2020);47

the Wisconsin Longitudinal Study; the Fragile Families and Child Wellbeing Study—have either48

already released or are considering releasing polygenic scores alongside their standard survey mea-49

sures.50

The proliferation of polygenic scores as the workhorse tool for studying genetic moderation51

of social environments raises the question: what genome-wide summary should researchers use?52

Until now, researchers have developed scores that are meant to predict the conditional mean of an53

outcome. One problem with then using these scores to study Gene by Environment interactions54

(G ⇥ E) is that the PGS used in the interaction term is constructed from a meta-analysis of levels55

e↵ects across multiple cohorts that di↵er temporally and geographically. As a result, the PGS may56

be particularly ill-suited for GxE analysis since it is based on the extraction of a signal for a main57

e↵ect that is common across the plausible range of environments with which researchers may seek58

to interact it (i.e. the multiple cohorts, countries and contexts on which it is based). By contrast,59

by estimating a vPGS based explicitly on variation as the estimand in the training, the score may60

capture signals of variation across environmental contexts. More broadly, the goal of the present61

paper is to expand social scientists’ methodological toolkit by presenting a new summary measure:62

scores summarizing genetic contributions to plasticity.63

The remainder of the introduction proceeds as follows. First, we outline two distinct forms of64

genetic moderation of social environments (Section 1.2). The first is when the environment’s impact65

on some outcome depends on that individual’s genetic propensity to attain that same outcome–for66

instance, pre-K having a larger e↵ect on academic outcomes among children with an already-high67

genetic propensity towards high educational achievement. Building on the discussion in (Domingue68

et al., 2020), we call this form of genetic moderation moderation through dimming or amplifying.69

Second is when the environment’s impact on some outcome depends on that individual’s propen-70
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sity towards variability in an outcome. We can call this form of moderation moderation through71

plasticity. We argue that the majority of GxE research implicitly uses the first model of genetic72

moderation (moderation via dimming or amplifying). By making these implicit choices explicit,73

we highlight that little existing research uses tools suited for measuring the second form of genetic74

moderation.75

Next, we outline how variance polygenic scores (vPGS) may capture this second form of genetic76

moderation (Section 1.4). We show that researchers’ focus on using methods for detecting genetic77

contributions to plasticity have thus far largely used the methods to find “top hits,” or a limited set78

of single nucleotide polymorphisms (SNPs) significantly associated with variability. We show our79

paper fills a gap by using these methods to construct genome-wide summary measures useful for80

GxE research, complementing other recent calls for better methods to detect genetic moderation81

of social environments (Domingue et al., 2020) and applications of vPGS (Schmitz et al., 2021).82

1.2 Implicit models of genetic moderation: outcome moderation versus vari-83

ability84

Past typologies of di↵erent types of gene-environment interactions have focused on di↵erences in85

the shape of the interaction (e.g., Boardman et al., 2014; Derringer et al., 2019). For instance,86

Boardman et al. (2014) and Derringer et al. (2019) each summarize three shapes of interactions:87

(1) diathesis-stress, where those with both a risky genotype and a highly-stressful environment88

have adverse outcomes; (2) vantage-sensitivity, where those with a less risky genotype and a low-89

stress environment have particularly good outcomes; and (3) cross-over or di↵erential suspectibility,90

where those with a risky genotype have adverse outcomes in high-stress environments but also have91

some of the best outcomes in supportive environments (Boyce and Ellis, 2005; Ellis et al., 2011).92

Researchers investigating genetic moderation of environments distinguish between these shapes93

through both theory and the form the interaction e↵ect takes—for instance, diathesis-stress having94

a crossover shape.95

Yet shape is only one dimension of how genotypes can moderate environments. The second96

dimension, which occurs regardless of shape, is what form of genetic variation moderates the impact97

of the environment on some outcome. Here, we review two types.98

1.2.1 Moderation through dimming and amplifying99

The first type of interaction, coined by Domingue et al. (2020), is moderation through an indi-100

vidual’s genotype dimming or amplifying an environment. This occurs when a social environment101

either impedes or removes an impediment to the expression of a genetically-influenced outcome.102

For instance, people may vary in their genetic propensity to complete formal schooling (Lee et al.,103

2018). However, in certain societies, there may be limited access to schooling for the population or104

some subgroup within the population (e.g., access to higher education was limited for women for105

much of the twentieth century in the U.S. and elsewhere). If that constraint is removed, individ-106

uals’ genetic propensities towards higher education that had enjoyed no avenue for expression can107

then become manifest. In this case, we would expect a significant interaction in a model where a108

person’s years of schooling is regressed on (1) an indicator for the cohorts impacted by education109

reform and (2) a summary measure of a person’s genetic propensity to complete formal schooling.110

The coe�cient between the genetic summary measure and reform would be null or smaller in the111

pre-reform years; it would become significant and positive during the post-reform years.1112

1Put di↵erently, a polygenic score trained in societies where those constraints were attenuated or absent would
poorly predict education before an expansion of schooling and then predict in an improved way — i.e. show increased

2
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As another example, economic changes in the U.S. have removed caloric constraints for much113

of the population. Genetic predispositions towards higher BMI now interact with an altered food114

environment (Guo et al., 2015; Conley et al., 2016). Those with a genetic predisposition towards115

higher BMI, which stems from a genetic architecture in part related to regulation of appetite and116

impulse control and in part related to metabolism (Locke et al., 2015), are more highly impacted117

by the new food environment.118

1.2.2 Moderation through plasticity119

The case of BMI, however, also highlights a di↵erent form of genetic variation that can interact with120

changes to the environment. Individuals may vary not only in their propensity towards higher or121

lower BMI, but also vary in their propensity towards changes in BMI in the face of environmental122

changes. Some individuals have genotypes that are less bu↵ering of environmental changes. When123

the environment changes (in either direction), their BMI is likely to exhibit large changes. Other124

individuals have genotypes that are more bu↵ering of environmental changes. When they enter a125

more calorie-rich or more calorie-restricted environment, their BMI is less likely to change because126

they adapt to that environment in ways that minimize changes, regardless of where they were on127

the BMI distribution at baseline. A genetic predisposition towards higher or lower levels of BMI128

might be very di↵erent than a genetic predisposition towards changes in BMI in the face of shifting129

environmental conditions.130

We call this form of genetic moderation moderation through plasticity. Plasticity can take two131

forms. First is variation in within-individual plasticity, which is relevant for dynamic outcomes like132

BMI and depression that change as individuals progress through the life course. As we discuss133

in the Conclusion, estimating genetic contributions to within-person variability is complicated by134

the lack of data with both large-scale cohorst that have been genotyped and repeated measures135

across genotyped individuals. Second, and more immediately tractable, is population-level variation136

in plasticity. To make more concrete, consider a shock that a↵ects BMIs in a population—for137

instance, neighborhood violence that leads to more sedentary activity. While one form of gene by138

environment interaction might predict that those with genetic propensities towards high BMI are139

most impacted by the change, a plasticity-focused interaction would instead find individuals, that140

regardless of their propensity towards higher or lower BMI, are most sensitive to the environmental141

shock.142

1.3 Gene ⇥ environment research using genome-wide polygenic scores has largely143

focused on moderation using levels scores144

The previous section showed that one form of genetic moderation of environments is moderation145

through dimming or amplifying : those with di↵erent propensities towards an outcome are di↵er-146

entially impacted by some environmental change. Yet in a particular context—changes to neigh-147

borhoods interacting with genotype to impact BMI; changes to education policy interacting with148

genotype to a↵ect schooling—genetic predispositions towards greater variability may also play a149

role.150

Yet researchers’ workhorse tool for studying genetic moderation of environments—polygenic151

scores for levels of an outcome—has inadvertently narrowed their focus to outcome moderation.152

Researchers use a three-step process when they develop and use these scores:153

genetic penetrance — once access to formal education was opened up.

3
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Step one: estimate separate linear regressions of some outcome (Y ) in a large training154

sample, to develop weights that reflect each variant’s contribution to levels of that outcome155

Step two: use the weights from step one to construct a polygenic score (PGS) in a separate156

sample157

Step three: interact that polygenic score with some measure of “E” to study genetic mod-158

eration of environments159

Researchers in step one have focused on genetic contributions to levels of an outcome, rather160

than genetic contributions to variability. Table 1, focusing on recent gene by environment studies161

that use polygenic scores, shows that the majority focus on how the impact of environments on some162

outcome vary among people with di↵erent propensities for that same outcome—e.g., the impact163

of neighborhood features on Type II diabetes having a larger impact on those with higher genetic164

propensities.165

Table 1 about here166

With the exception of Domingue et al. (2017), who examine how a genetic risk score for wellbeing167

bu↵ers the impact of the loss of a spouse on depression, nearly all studies examine the dimming or168

amplifying mechanism. Furthermore, this focus on one form of genetic moderation is often implicit,169

with the researchers stating that they are studying gene by environment interactions, rather than170

stated as an explicit estimand (Lundberg et al., 2020), with the researchers stating that they are171

studying a particular type of gene by environment interaction. The failure to make the specific172

type of moderation explicit has led to missed opportunities to examine other forms of moderation.173

1.4 Variance polygenic scores as a tool for examining new forms of genetic174

moderation175

The implicit focus on one form of genetic moderation of social environments stems from the re-176

liance on one tool for G⇥E research: polygenic scores trained to predict levels of an outcome. We177

follow others’ recent calls to expand social scientists’ toolbox for studying genetic moderation of178

environments. Recently, Domingue et al. (2020) discuss “dimmer-type” gene-environment interac-179

tions, which corresponds with outcome moderation, and “lens-type” gene-environment interactions,180

which take a di↵erent form.2 They argue that while social scientists often frame GxE research as181

wanting to study lens-type interactions, social scientists’ reliance on polygenic scores for levels of an182

outcome might impede their progress. As they put it: “The selection of PGS e↵ects for examining183

lens-type GxE may be particularly challenging in that we construct PGSs from GWASs that only184

include main e↵ects of SNPs. If the environmental context of the participants in the GWAS sample185

used to construct the PGS is similar to that in the test sample used to estimate GxE then it is186

unlikely to include SNPs that demonstrate lens-type patterns as the main e↵ects of these SNPs will187

be close to zero”(p. 10). This call suggests that better tools for either variability moderation or188

“lens-type” moderation are genome-wide summary measures (PGS) constructed from weights that189

more closely mirror theory behind GxE.190

Here, we present one approach: constructing genome-wide summary measures from models that191

2As they describe: “When considering lenses, the relative e↵ect of a given genotype may be positive for a ’low’
level of the relevant environmental exposure and negative for ’high’ levels of the exposure, or vice versa”(p. 9).
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measure genetic contributions to variability in outcomes.3 In the language of statistical genetics,192

these models are called “vQTL analyses,” or models for detecting variance-a↵ecting loci. In turn,193

researchers have developed a variety of approaches for detecting genetic contributions to variability.194

But thus far, the researchers have only used these approaches to find the “top SNPs”—a few SNPs195

that have the lowest p-values in regressions performed separately for each SNP. They have not yet196

used the weights from these models to construct genome-wide scores for plasticity.197

Rönneg̊ard and Valdar (2011) first coined the term vQTL to discuss genetic contributions to198

trait variability. One of the earliest attempts at vQTL analysis was Yang (2012), who operational-199

ize variability as a person’s Squared Z-score of a trait—the person deviates from the mean of an200

outcome in either direction. Wang et al. (2019) and others use the classic Levene’s test, which201

examines whether the error variance significantly di↵ers across subgroups—in the genetics case,202

across the three subgroups (AA, AB, and BB) at a given variant. Yet these attempts can lead to203

false positives when trying to distinguish between variants that a↵ect the mean of an outcome and204

variants that a↵ect the variance.205

Two methods aim to control for this mean-variance conflation. Conley et al. (2018) use sibling206

pairs to examine how variation in the sibling pair’s combined count of minor alleles at a locus con-207

tributes to that sibling pair’s standard deviation in the trait, controlling for the sibling pair’s mean208

levels of a trait. Young et al. (2018) decompose trait variance into two components–an “additive209

e↵ect” and a “dispersion e↵ect”—and argue that the latter provides a measure of “when a SNP has210

a variance e↵ect beyond that which can be explained by a general mean-variance relationship”(p.211

1613).4212

There is a significant gap in the use of these methods to study gene-environment interplay.213

Researchers have used each method to find “top hit” loci that contribute to variability in traits214

like BMI (Yang, 2012; Conley et al., 2018; Young et al., 2018).5 Some such as Wang et al. (2019),215

Young et al. (2018), and Marderstein et al. (2020) have also interacted these highly significant216

single SNPs one by one with measures of social environments. No studies of which we are aware217

have explored whether the “variance weights” that these methods generate can be aggregated to218

produce what we call variance polygenic scores, or genome-wide summary measures of a person’s219

plasticity. vPGS can expand demographers’ toolbox for studying gene-environment interplay. Our220

study is the first to build and characterize the properties of this new tool.221

1.5 Research goals/questions222

1. What are best practices for building variance polygenic scores?223

2. When we build these scores, do they reflect distinctive genetic contributions to224

variability in a trait, or are they too correlated with scores for levels of an outcome225

to serve as a new tool for gene-environment research?226

3. Applying the scores to a real-world example (education reform in the UK), what227

3This approach complements the approach in Boardman et al. (2014) of studying genetic moderation of specific
environmental shocks. In particular, in their study, they use what they call a genome-wide gene-by-environment
interaction (GWGEI) approach that regresses level of an outcome (BMI) on each SNP’s interaction with an environ-
mental moderator (education). They note the promise of the approach for capturing G⇥E, but also challenges with
statistical power.

4Other methods that we do not include in the present review because of their similarity to the four we focus on
include the new deviation regression model (Marderstein et al., 2020), which models the absolute di↵erence between
an individual’s phenotype value and the phenotype medians within each genotype, and the double generalized linear
model (DLGM) (?).

5These are SNPs with e↵ects on the outcome that fall below some p-value threshold.
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forms of moderation do we see?228

2 Methods229

2.1 Estimating vPGS weights in the UK Biobank230

To build the two types of scores for comparison—a typical PGS (hereafter: mPGS) for levels of231

an outcome; a vPGS for variability in an outcome—we use the UK Biobank, a dataset containing232

about 500,000 individuals from across the United Kingdom. The sample was limited to respondents233

who passed quality control and were of British ancestry, using information provided by the UK234

Biobank, leaving us with 408,219 in our final analytic sample. Further information regarding235

sample construction and quality control can be found in Online Supplement Section S.1.236

This size of the UK Biobank allows us to divide the sample into training and test sets while237

still maintaining su�cient statistical power for fitting GWAS and vQTL. Training and test sets238

were produced by randomly sampling respondents. 80% of the British subsample of the UKB was239

included in the training set; the remaining 20% made up the test set.240

We analyze four outcomes: height, body mass index (BMI), educational attainment, and number241

of children ever born, a measure of fertility. The inverse normal transformations of the outcomes242

were calculated. Traits were also z-scored to create a second set of dependent variables, used in243

the Squared Z-score analyses. Unless specified as z-scored, a trait/outcome should be assumed to244

be inverse normal transformed.245

For each outcome, first a regression was run predicting the inverse normal of that outcome, such246

that the weights reflect the contribution of each genetic locus to the mean level of the outcome.247

These regressions were performed using the software PLINK (version 1.9), controlling for age, sex,248

array, and the first 40 PCs.6 We refer to these regression weights as weights for Levels PGS, and249

they correspond to the traditional tools used in G⇥E research.250

A set of second identical regressions predict the Squared Z-score, rather than inverse normal, of251

the outcome, corresponding with the method for vQTL analysis discussed in (Yang, 2012). Again,252

age, sex, array, and the first 40 PCs were included as controls. Since the z-score is squared, values253

which are the same number of standard deviations above or below the mean will receive the same254

value. Thus, the regression predicts distance from the mean, rather than the mean-level itself,255

though, as we argue above, this will still be correlated with the mean. We refer to the weights and256

polygenic scores produced by these regressions as Squared Z.257

Third, regressions were run for each outcome on the sibling subsample of the UK Biobank,258

which includes 19,294 white British sibling pairs, while controlling for the same set of covariates as259

above. For each sibling pair, the intra-sibling mean and SD were calculated. We then residualized260

the SD with the mean and used this new residualized standard deviation as our outcome variable.261

Since each sibling pair was represented twice in the data, we used only one member of each sibling262

pair in the final regressions. We refer to the weights and polygenic scores produced by this method263

as Sibling SD.264

Fourth, a Mean-Variance vQTL analysis using Levene’s test for variance heterogeneity was run265

using OSCA (www.cnsgenomics.com/software/osca) (Wang et al., 2019).The Levene’s test does not266

estimate the e↵ect size and standard error, but rather assesses the equality of variances between267

sample groups (in this case, those that do and do not have a given allele). Thus, following (Zhang268

et al., 2019), OSCA re-scales the test statistics (p value) to e↵ect size and standard error using269

6Terms with interactions and higher order age variables (age2, age2 * sex), which have been employed in other
studies, such as (Young et al., 2018), were excluded due to issues with multicollinearity.
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Z-statistics. We refer to the weights and polygenic scores produced by this method as as Levene’s.270

OSCA requires one to distinguish continuous from discrete controls. As such, we treated the binary271

variables sex and array as discrete and age and PCs as continuous.272

Fifth, a Mean-Variance vQTL analysis using heteroskedastic linear mixed models was similarly273

used (Young et al., 2018). Their method produces additive (mean) and variance e↵ects. It also274

allows us to derive what they term dispersion e↵ects, which are variance e↵ects that are independent275

of the mean e↵ect. We use the weights produced by these dispersion e↵ects in subsequent analyses,276

referring to them as HLMM. Age, sex, array, and the first 40 PCs were included as both mean and277

variance covariates.278

Finally, to ensure that results comparing the di↵erent vPGS were due to true di↵erences between279

the scores, and not due to di↵erences that arise from the smaller sample size and lower precision in280

the sibling-based method, for every vQTL or GWAS analysis run on the full sample an analogous281

analysis was run on a randomly-chosen subsample, where the number of respondents was set to be282

equal to the number of sibling pairs in the UK Biobank.283

2.2 Constructing vPGS in the Health and Retirement Study (HRS)284

Using the weights from the previous step, we constructed vPGS in the Health and Retirement285

study. The HRS sample is restricted to (1) self-identified European Americans, who (2) pass286

the HRS preprocessing procedure and are within 2 standard deviations of the mean of the first287

two principal components of their racial/ethnic group. This leaves N = 10, 554 respondents in288

the genotyping sample. Then, we filter to respondents with at least one wave of BMI, a primary289

outcome, collected (r*bmi). N = 5, 744 respondents remained after this exclusion.7 The replication290

code contains details on the outcome variable construction; most notably, since the HRS is time-291

varying with several waves, we took the most recently observed value of the outcome for each292

respondent.293

2.3 Analytic approach294

2.3.1 Relationship between mPGS/vPGS and levels of an outcome295

We use three tools to explore whether vPGS can capture genetic contributions to variability in an296

outcome, distinct from genetic contributions to levels of an outcome.297

First, we estimate the following linear regression, where i indexes a respondent, PGS indicates298

the levels PGS (mPGS) or a variance PGS (vPGS), and Y is levels of the outcome trait (converted299

to the standard normal scale). Xi includes the first 5 principal components (PCs). Our coe�cient300

of interest is �1—we expect the levels PGS to significantly predict levels of a trait. We also conduct301

a robustness check where, in addition to controlling for age and sex in the construction of the302

vPGS weights using the UKB, we also control for these covariates in the regression. We find no303

substantive di↵erences with these additional covariates.304

In turn, SNPs are a mix of four types: (1) SNPs that a↵ect neither levels of an outcome nor305

variance in an outcome, (2) SNPs that a↵ect levels of an outcome but not its variance, (3) SNPs306

that a↵ect variance in an outcome but not levels of an outcome, and (4) SNPs that a↵ect both307

variance in and levels of an outcome. For traits that are not normally distributed, isolating SNPs of308

the third type is made more di�cult by the fact that any SNP that a↵ects the mean of an outcome309

will also a↵ect the outcome’s variance (Young et al., 2018). Here, we aim to construct plasticity310

7We did this approach, rather than imputation, because the missingness was in the outcome variable rather than
in a predictor.
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scores that capture genetic contributions to variability, and that are therefore comprised of SNPs of311

type three (SNPs that a↵ect variance but not the mean) purged of general mean-variance artifacts312

from non-normal distributions and SNPs of type four. Since the distribution of type three and type313

four SNPs should be constant across each of the vPGS we compare, we interpret a larger positive314

coe�cient on the vPGS from a regression of levels of an outcome on the vPGS as evidence that the315

vQTL method is picking up either (1) a large share of type four SNPs relative to type three SNPs316

or (2) has weights that fail to adjust for the mechanical relationship between mean and variance.317

For these regressions, our samples are the HRS and the held-out test set of the UKB.318

Yi = ↵+ �1PGSi + �Xi + ✏i (1)

Second, we examine whether these patterns of correlation after constructing the vPGS in each319

sample are also present in the underlying weights that summarize each SNP’s contribution. We use320

linkage disequilibrium score (LD) score regression (Bulik-Sullivan et al., 2015b) for two purposes.321

First, we use the technique to compare the heritability of levels of an outcome to the heritability of322

plasticity in that outcome measured using the four techniques discussed above (Squared Z; Levene’s323

test; HLMM; sibling SD). Then, we compare the underlying genetic correlations between (1) levels324

and variability for each outcome, (2) across outcomes in levels and variability (Bulik-Sullivan et al.,325

2015b) (for a social science application of genetic correlations, see: (Wedow et al., 2018)).326

Finally, since the analyses of heritability show very low heritability for vPGS like HLMM and327

sibling SD that are less confounded with levels of an outcome, we conduct two validation exercises328

to investigate whether the vPGS are capturing some form of plasticity and that the two scores329

do not just represent random noise. Using the HRS, which, unlike the UKB, has repeated mea-330

surements of the phenotype over time, we explore the relationship between each vPGS and two331

forms of plasticity. The first form of plasticity is within-person variability, which we measure using332

two versions of the within-person standard deviation in BMI: a version using raw values of BMI333

and a version detrended using age-specific trends. The second form of plasticity is unexplained334

population-level variability, which we operationalize by regressing BMI on age, sex, and the first335

five PCS, and then using the squared residual from that regression as the outcome.336

Together, these analyses show that two of the polygenic scores for plasticity—one constructed337

using the Squared Z-score of an outcome; the other constructed using Levene’s test for variance338

heterogeneity—fail to summarize genetic contributors unique to variability in an outcome. How-339

ever, two of the polygenic scores for plasticity—one summarizing “dispersion” e↵ects; the other340

constructed from sibling variation—capture more distinctive genetic contributions. We focus on341

these two tools for the application we discuss in the next section, but include results with all four342

scores in the Online Supplement.343

2.3.2 Comparing mPGS versus vPGS as moderators of a UK education reform344

We use these preferred plasticity scores to study heterogeneous e↵ects of a large-scale education345

reform initiated in 1972 in England, Scotland, and Wales that extended how long students were346

legally required to stay in school from 15 to 16 years old (Barcellos et al., 2018). Using Barcellos347

et al. (2018)’s regression discontinuity design, we evaluate the extent to which the two e↵ective vPGS348

are able to detect di↵erent forms of genetic moderation of this educational shock than the standard349

levels polygenic scores. We examine two di↵erent cases using the same reform as the exogenous350

environmental context: one where, following Barcellos et al. (2018), we examine the moderating351

role that the genetic risk of obesity plays in the relationship between education on body size and352

another where we evaluate the influence of genetic plasticity on downstream educational outcomes.353

Both outcomes are a↵ected by gene and environment interactions but di↵er in the kinds of GxE354
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e↵ects they exhibit: while the e↵ect for body size is the result of outcome moderation, the latter355

results from plasticity.356

More specifically, following Barcellos et al. (2018), we use 2SLS to first instrument whether357

someone stayed in school until 16 years of age (Educ16) with whether they were younger than 16358

when the reform went into place (post reform), and were therefore legally required to stay the extra359

year. This residualized version of Educ16 is then interacted in the second step with BMI PGS to360

evaluate whether there is an interaction between educational attainment and genes as they a↵ect361

health outcomes. We also report a reduced form regression, where PGS is directly interacted with362

the post reform variable.363

The main health outcome is Body Size - a weighted combination of BMI, waist-to-hip ratio,364

and body fat percentage. In a separate NBER preprint, Barcellos et al. (2019) identified the point365

in the Body Size distribution at which they should have the most power to detect an e↵ect. We use366

this same distributional threshold to create an Above Threshold version of Body Size, the results367

for which can be compared to the continuous version of the outcome.368

In a second set of analyses, we examine the role of genes in the impact of an additional year369

of education on downstream educational outcomes. Here, rather than instrumenting educational370

attainment, we look specifically at whether the e↵ect of one’s genotype on education outcomes371

di↵ers depending on whether one was born before or after the reform. This is akin to the reduced372

form regressions reported for BMI. We follow the previous literature (Barcellos et al., 2018), which373

found no e↵ect of the reform on the likelihood of attending college, and focus on the outcomes of374

those who left school at the age of 18 or younger. We examine the e↵ect of the reform on four375

educational outcomes, previously used in the literature. First, we consider whether the respondent376

left school at age 16 or later, since despite the reform some students still opted out of attending377

college through age 16 (Left School 16 or later). Second, we consider whether respondents achieved378

any certifications as a result of their education (Certification). For the last two outcomes, we379

explore whether they achieved specific certifications: O-levels or CSE (which were equivalent and380

later replaced by the GCSE in 1988) and A-levels.381

Controls, for both sets of models, include a quadratic term for the number of days that passed382

from when the respondent was born until the time of reform (to factor out any time trends), dummy383

variables for the month born, sex, age at time of assessment in days, age squared, dummy variables384

for country of birth, the first 15 PCs, mPGS, the interaction between those PCs and Educ 16 (or,385

in the reduced form, Post Reform), and the interaction between mPGS with Educ16. Triangular386

kernel weights were used to assign more weight to observations closer to the reform and time trends387

were allowed to vary before and after the reform (Barcellos et al., 2018). Because we will show that388

the Squared Z-score and Levene’s test plasticity scores fail to capture variability distinct from mean389

e↵ects, we do not present them in the main text but instead present them in the Supplementary390

Materials (Section S).391

3 Results392

3.1 How do the plasticity scores relate to levels of a trait?393

The first question that arises when using plasticity scores for GxE research is: is the plasticity394

score simply capturing genome-wide contributions to levels of an outcome, rather than capturing395

genome-wide contributions to variability in an outcome? If the plasticity score looks very similar396

to social scientists’ standard tool for GxE research, it is less useful as a new tool for capturing397

distinctive forms of genetic moderation. Figure 1 summarizes the results of Model 1, or whether398

the plasticity score significantly predicts levels of an outcome. The left hand side shows the results399
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in the smaller sample size HRS; the right panel the results in the larger sample size UK Biobank400

test set. Each bar represents one of the four outcomes of interest to demographers: height; BMI;401

education; number of children ever born (NEB).402

We see that, as expected, the levels PGS predict levels of an outcome. But in three out of the403

four traits, the Squared Z vPGS significantly predicts levels of a trait. In two of the four traits, the404

Levene’s test vPGS significantly predicts levels of a trait. In contrast, the sibling SD and HLMM405

vPGS were only significant for one out of the four traits in the HRS sample, though were significant406

for more traits in the UKB test set.407

Overall, the results show that researchers hoping to use plasticity scores for gene-environment408

research should be careful to choose one of the tools that captures distinctive genetic contributions409

to plasticity apart from genetic contributions to an outcome’s mean. Online Supplement Section410

S.3 presents additional results, which include comparing the scores’ significance when we match the411

sample size of the non-sibling scores to the sample size in the sibling-based analyses.8412

Figure 1 about here413

3.2 What is the genetic correlation between mPGS and vPGS?414

The previous results show that when we aggregate weights from the di↵erent vQTL methods to415

produce a polygenic score for plasticity, some of the scores—most notably, the Squared Z vPGS—416

perform similarly to an mPGS in predicting levels of a trait. As a result, the score may be a less417

useful tool for examining certain forms of gene-environment interplay since they fail to capture418

distinctive genetic contributions to variability.419

Here, we examine whether we can use tools aimed at using weights from mPGS to infer (1)420

heritability and (2) genetic correlation to examine the genetic architecture of plasticity.421

Online Supplement Section S.5 contains the results from using LD score regression to examine422

the univariate heritability of each of the four outcomes—first, levels of an outcome (replicating423

previous work) and second, plasticity in that outcome (extending that work). We find that the424

only valid estimates of heritability are for the squared Z-score, possibly due to the method requiring425

weights with a certain degree of precision to generate non-zero heritability. Future research should426

investigate better methods for estimating heritability for less well powered vQTL weights.427

Since the squared Z-score was the only one with non-zero heritability across outcomes, we428

examine the genetic correlation between (1) levels of each outcome (replicating past work by Bulik-429

Sullivan et al. (2015a)), (2) plasticity in each outcome (extending that work), and (3) levels and430

plasticity. Notably, these genetic correlations are prior to estimating the scores in a sample, so431

reflect a shared genetic architecture between contributors to levels of an outcome and contributors432

to variability in an outcome.433

The top panel of Table 2 shows the genetic correlation between the levels PGS and the Squared434

Z vPGS for each of the outcomes. It shows that the weights for the levels PGS for that trait are435

significantly correlated with the weights for the Squared Z vPGS.436

The middle panel of Table 2 shows between-trait patterns of genetic correlation for (1) the levels437

8This robustness check helps guard against us finding that the sibling SD score does not significantly predict levels
of an outcome, while the non-sibling scores do, due to inadequate power for the sibling score compared to the scores
estimated in a larger sample size. The fact that the patterns hold in the matched sample size supports our claim
that the Squared Z and Levene’s test scores are less useful as distinctive tools.
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PGS9 and (2) the Squared Z vPGS. The analysis investigates whether there are similar patterns438

of cross-trait genetic correlation in variability in addition to levels. The results show that the439

patterns are similar except for the relationship between BMI and height. In particular, the one440

exception is that levels of height and BMI are negative genetically correlated (in other words, those441

with genetic propensities to be taller also have genetic propensities towards lower BMI, replicating442

the relationship in Bulik-Sullivan et al. (2015a)) but plasticity in height and BMI is positively443

correlated. As we discuss in the Conclusion, this relationship deserves more attention in future444

research and could reflect di↵erential sensitivity to environmental inputs to growth.445

Table 2 about here446

The bottom panel of the table also highlights the underlying genetic correlation between an447

mPGS meant to purge variance e↵ects (the additive weights from the HLMM method) and each448

vPGS within a trait, which shows generally negative patterns. Appendix Section S.5 shows a visual449

summary of these correlations.450

3.3 Validation that the vPGS correlates with plasticity451

The previous sections showed that (1) especially the squared Z score vPGS was highly correlated452

with levels of an outcome and (2) that vPGS was the only one to have precise-enough estimates to453

be able to examine heritabilities and genetic correlations. Yet the noisiness of the vPGS estimates454

raises a question: could the results of Section 3.1 stem from scores that reflect random noise, rather455

than true contributions to variability?456

Here, we report the results of the validation exercise discussed in Section 2.3.1. Figure 2 shows457

the results of relating each vPGS to within-person variability in BMI among respondents with458

at least three waves of BMI observations (Online Supplement Section S.6 discusses details of the459

sample construction and shows the full regression results). We see that individuals with higher460

vPGS have significantly more over-time variability in BMI than individuals with lower vPGS.461

Online Supplement Section S.6 also discusses a validation exercise where we regress the squared462

residual of BMI on each of the vPGS.463

Figure 2 about here464

3.4 Summing up thus far: which vPGS can serve as new tools for GxE?465

Taken together, the results show that the Squared Z vPGS vPGS is less useful for social scientists466

looking for a new tool to examine gene-environment interplay. The vPGS significantly predicts467

levels of an outcome across four diverse traits (height; BMI; education; number of children ever468

born). The Squared Z-score also exhibits patterns of underlying genetic correlation similar to those469

between levels of a trait. In contrast, the sibling standard deviation method (Conley et al., 2018)470

and dispersion weights (Young et al., 2018) show better properties in capturing distinctive genetic471

contributions to plasticity that appear less confounded with levels of an outcome.472

Why might past research studying methods for vQTL have missed the ways in which certain473

methods fail to capture distinctive genetic e↵ects? Section S.7 in the Online Supplement begins474

9These replicate results from Bulik-Sullivan et al. (2015a) for overlapping outcomes and also extend their analysis
to look at additional outcomes like number ever born.
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with the common way that researchers assess whether a method for detecting vQTLs overlaps with475

a method for detecting mean e↵ects/normal QTLs: examining whether the two methods select476

similar SNPs as “top hits.”10 The results show that while the top hits comparison reveals some477

degree of overlap—for instance, the Squared Z score and Levene’s top hits display more overlap478

with the levels top hits than the other methods—this comparison might be too conservative. In479

particular, an mPGS and vPGS might not happen to have overlap in the SNPs with p values below480

a threshold but the two might have overlap in SNPs with non-zero weights that contribute to the481

final scores. Overall, the combined results show that social scientists interested in using vPGS as a482

new tool should look carefully at whether the vPGS is distinctive from, or nearly identical to, the483

mPGS for that outcome.484

4 Using the vPGS to examine heterogeneous impacts of education485

reform486

Having examined the properties of the di↵erent polygenic scores for plasticity, their distinctiveness487

from the standard tool for GxE research (mPGS), and their relationships to one another, we can488

use them to adjudicate between di↵erent mechanisms of genetic moderation. Specifically, we have489

argued that interactions between mPGS and the environment in predicting an outcome capture490

outcome moderation, while variance polygenic scores can capture a di↵erent form of heterogeneous491

e↵ects.492

With this in mind, we turn to using mPGS and di↵erent vPGSs in a practical example to explore493

which kind of genetic moderation is at play. We build upon the research of Barcellos et al. (2018).494

They investigate the impact of an educational reform that raised the required age of schooling495

from 15 to 16 years in England, Scotland, and Wales. Unlike measures like an individual’s own496

educational attainment or their parent’s educational attainment, which can lead to false-positive497

gene-environment interactions through confounding between the environmental shock and parent498

genotype (discussed in (Conley, 2016)), the reform’s timing is exogenous to genotype. It allows us499

to study the di↵erent forms of genetic moderation, as well as a chance to examine the performance500

of di↵erent vPGS measures in an applied example.501

We evaluate two sets of outcomes. First, following Barcellos et al. (2018), we evaluate whether502

there was genetic moderation of the reform’s impact on health outcomes in the form of body503

size. If the form this moderation takes is outcome moderation, then the mPGS for BMI would504

significantly interact with the reform—the reform might have a larger impact on those with an505

already-low genetic propensity towards obesity (amplifying their advantage) or it might have a506

larger impact on those with a high genetic propensity (bu↵ering their risk). Alternately, if the form507

this moderation takes is variability moderation (significant interaction between the vPGS and the508

post-reform indicator), the reform has larger impacts on those who, across many shocks, experience509

more swings in BMI.510

Second, extending Barcellos et al. (2018), we evaluate whether there was genetic moderation511

of the reform’s impact on educational outcomes. Here, outcome moderation occurs if the reform512

has a larger impact on those with especially high or low genetic propensities towards educational513

attainment. Under the “education as the great equalizer hypothesis” (Barcellos et al., 2020), we514

might expect that those with the lowest educational polygenic score are the most impacted by the515

extra year of mandatory education. Variability moderation occurs if the reform has heterogeneous516

10Researchers use this in conjunction with simulations comparing the methods, but those simulations likewise
largely focus on one or two top causal SNPs.

12

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 17, 2021. ; https://doi.org/10.1101/2020.08.30.274530doi: bioRxiv preprint 

https://doi.org/10.1101/2020.08.30.274530
http://creativecommons.org/licenses/by-nc-nd/4.0/


e↵ects on individuals with di↵erent underlying genetic plasticity11.517

4.1 Genetic moderation of the education reform’s impact on body size518

For the body size models, presented in Table 4, the interaction between mPGS and being exposed519

to the reform is the only statistically significant result. None of the polygenic scores for plasticity520

show a significant interaction, with the exception of Squared Z-Score vPGS (Online Supplement521

Section S.8, which uncovers a marginally significant result (on the Above Threshold outcome)).522

This result is likely due to the high correlation between the Squared Z-Score vPGS and mPGS.523

These results suggest that outcome moderation (rather than plasticity) is the main form that524

genetic moderation of the education reform takes when impacting these measures of health. Put525

di↵erently, and as visualized in Figure 3, the reform has larger impacts on reducing obesity-related526

measures among those with already-higher genetic propensities towards obesity. The results largely527

replicate those found in Barcellos et al. (2018), and show that the mPGS the original authors used528

ended up corresponding to the type of genetic moderation that unfolded.529

Table 3 about here530

Figure 3 about here531

4.2 Genetic moderation of the education reform’s impact on educational at-532

tainment533

While the reform’s impact on health outcomes follows the pattern of outcome moderation, the534

reform’s impact on educational attainment might take a di↵erent form. When examining this535

impact, we find a significant interaction between the HLMM polygenic score for plasticity and Post536

Reform when predicting three of the four education outcomes: Left School 16 or later, Certification,537

and O-levels or CSE. The interactions between the HLMM plasticity score and Post Reform remain538

significant when controls are included. By contrast, we find significant interactions between mPGS539

and Post Reform for only one of the four outcomes: Left School 16 or later. The results are540

presented in Table 5 and visualized in Figure 4, which compares the predicted educational outcomes541

for children in the lowest, middle, and upper terciles of the HLMM vPGS distribution before and542

after the reform. For the significant interactions, the results show that those with higher HLMM543

polygenic score attain lower levels of education outcomes prior to the reform but equal levels544

of education outcomes after the reform, potentially because they had enhanced sensitivity to the545

positive e↵ects of the reform. And because the results in Section 3.1 show that the HLMM plasticity546

scores capture genetic contributions to plasticity in outcomes distinct from genetic contributions547

to the conditional mean, we are more confident that the e↵ect is a true positive.548

11Here, regressions that use vPGS also control for mPGS to ensure that the observed e↵ects do not simply reflect
outcome moderation. To understand how the inclusion of mPGS a↵ects these results, we report regressions where
mPGS is not controlled for in section S.8 of the SI. There, we also report the full regression results for the GxE
analyses reported in the main text.
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Table 4 about here549

Figure 4 about here550

5 Discussion551

Recognizing the biosocial nature of most outcomes of interest to demographers, social scientists552

are increasingly interested in how genetic variation moderates the impact of life-course events that553

range from society-wide education reforms to targeted policy interventions aimed at specific sub-554

groups. That is, in addition to estimating direct main e↵ects of genotypes and environments, social555

and behavioral scientists often seek to model the mutual dependence of nature and nurture. Nu-556

merous metaphors have been o↵ered for this causal model of human traits—e.g., genetics as a lens557

(Domingue et al., 2020) or genetics as a prism refracting environmental influences into heteroge-558

neous treatment e↵ects (Conley and Fletcher, 2018).559

In this paper, we argue that social scientists’ workhorse measure of G in GxE research—a ge-560

netic summary measure that reflects genetic contributions to levels of an outcome—commits those561

researchers to an implicit model of genetic moderation of environments. The model corresponds to562

what we call outcome moderation, and to what others have recently called “dimmer-type” moder-563

ation (Domingue et al., 2020). While this model may characterize some forms of gene-environment564

interplay, there are likely other forms of gene-environment interplay that summary measures con-565

structed from aggregating e↵ects on an outcome’s mean fail to capture.566

We propose the use of polygenic scores for plasticity as an addition to social scientists’ toolbox.567

We first investigate the properties of this tool before applying it. First, focused on best practices,568

we show how conflation between genetic e↵ects on an outcome’s mean and e↵ects on that outcome’s569

variance begin with SNP-level analyses but then appear in the constructed scores. The conflation570

also makes it di�cult to investigate whether plasticity in outcomes like BMI displays di↵erent pat-571

terns of heritability than levels of those outcomes, though an initial analysis of genetic correlations572

shows an interest flip where levels of BMI and height are negatively genetically correlated but573

plasticity in the two has a positive correlation. As a whole, we argue that researchers interested in574

a polygenic score for plasticity as a distinctive summary measure of genotype should be careful to575

construct scores based on weights from methods that try to adjust for false positive e↵ects on the576

mean.577

Second, applying the scores to a real-world application, we show how adding an E ⇥ vPGS578

analysis to an E ⇥mPGS analysis can detect a particular type of GxE interaction that deploying579

only an mPGS would obscure. Building on Barcellos et al. (2018), we show that, in line with their580

results but contrary to our priors, outcome moderation best characterizes the education reform’s581

impact on health outcomes. But genetic plasticity might better explain the reform closing gaps582

in educational attainment between low and high-plasticity youth. These results show that one583

cannot know in advance with great certainty which form of moderation will be operative and thus584

researchers should test for both forms.585
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5.1 Limitations and directions for future research586

The first limitation is that our application of the polygenic scores for plasticity was limited to one E:587

an education reform in the UK. In turn, and relevant to the theoretical discussion in Section 1.2, we588

might imagine that di↵erent environmental treatments are more or less likely to exhibit moderation589

by a person’s plasticity. Due to the issues others have raised about false positives where researchers590

think they are detecting GxE e↵ects but instead are detecting unobserved confounding between591

genotype and environment (Conley, 2016; Domingue et al., 2020), we prioritized studying the e↵ect592

of an “E” that was clearly causally identified over examining how multiple, potentially-confounded593

“E” interact with each of the focal vPGS. Future research leveraging other natural experiments594

that alter environments should incorporate plasticity scores to investigate their relevance for other595

contexts.596

Second, as we outline in Section 1.2, there are at least two ways we can think about genetic con-597

tributions to plasticity. The first, within-individual plasticity, would require an estimation strategy598

where we train the inputs weights to the PGS on repeated measures of the same outcome within599

an individual (e.g., variation in BMI across many years). This form of plasticity is a promising600

avenue for future research. Predicting within-person (or within-family) variation over time without601

having to know explicitly what the fluctuating environmental factors are may prove to be a useful602

exploratory exercise before researchers try to hypothesize about specific factors in the environment603

that may be causing the fluctuation in genotypically-plastic individuals. Moreover, one could imag-604

ine using a within-person variability score to identify individuals who might be responsive to an605

intervention in advance—be that a drug trial or an educational intervention. The advantages of606

identifying such individuals include increased statistical power for the identification of e↵ects in a607

pilot study before investing in a larger, more costly study. In terms of the feasibility of this second608

type of plasticity score, unfortunately, data sources like UKB that contain a large enough sample609

size to estimate new weights for polygenic scores lack large-scale repeated measures of the same610

individual. Once these data sources become available, future research can construct scores better611

designed for this form of plasticity.612

Third, we might imagine two forms of plasticity. One form of plasticity is trait specific and613

occurs in response to various environmental triggers—so an individual with high BMI plasticity614

might have more BMI variability in response to many di↵erent environmental shocks (e.g., educa-615

tion reform; changes in food landscape; changes in peer group eating behavior). But another form616

of plasticity may be both trait specific and environment specific—so an individual may not have617

“generally high BMI plasticity,” but instead have high plasticity of BMI in response to a certain618

type of environmental trigger. The present approach to estimating variance-a↵ecting SNPs weights619

and constructing cross-environmental vPGS captures the first type of plasticity, but fails to capture620

the second. For the second type of plasticity, researchers in statistical genetics are using flexible,621

machine learning methods to (1) focus on a specific “E” or environmental shock, (2) interact that622

“E” with many SNPs, (3) use regularization and other methods to find top-performing “SNP:E”623

interactions (for an early application noting challenges, see: (Boardman et al., 2014); more recently,624

Frost et al. (2016) use elastic net penalized regression to zero-out many of the SNP:“E” interac-625

tions). The weights from those methods focused on interactions between a specific “E” and each626

SNP could be used to estimate vPGS specific to certain environmental triggers.627

Fourth, the present paper focuses still on scores that can be interacted with a specific measure628

of environment. But twin- and other pedigree-based approaches to estimating heritability have long629

been deployed to estimate GxE, for example, by assessing whether the additive heritability estimate630

changes in the face of di↵ering social conditions (e.g., social class background; birth cohort)(e.g.,631

Boardman et al., 2010; Vink and Boomsma, 2011). Newer methods such as GREML-based molec-632
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ular methods allow for similar analysis under the same general framework where a shift in the633

additive (SNP) heritability is evidence of GxE (e.g., Rimfeld et al., 2018). However, since these634

methods each take an approach of variance decomposition, these methods cannot distinguish be-635

tween di↵erent heritabilities due to a change in the genetic variance or a corresponding shift in the636

environmental variance. More importantly, by testing for changes in the total, additive heritability,637

as is the case for GxE studies using polygenic scores based on levels regressions, these approaches638

may be missing important GxE that do not result from di↵erences in the predictive power of levels’639

e↵ects. One way to think about the plasticity or variance e↵ect as it interacts with the environment640

is as an “environmental (and genetic)” epistasis term. That is, it is a non-additive e↵ect that is not641

captured in traditional models. The goal of using vQTL methods is to capture this non-additive642

e↵ect.643

Finally, there is growing attention to how standard polygenic scores (mPGS) do not represent644

“pure” genetic measures of propensities; instead, the weights reflect a combination of direct genetic645

e↵ects and biases from population stratification and genetic nurture (Kong et al., 2018; Trejo and646

Domingue, 2019; Zaidi and Mathieson, 2020). Because of these issues, for generating vQTL weights,647

the ideal design is either having the genotypes of two or more siblings along with the parent geno-648

type, or having the genotype of three or more siblings and being able to add a fixed e↵ect for the649

sibling pair. However, these methods require large-enough samples with one of those family-based650

structures. In the present paper, the sibling SD method provides one approach to addressing bias651

in the vQTL weights but future research should explore changes in vQTL weights when generated652

using a family-based design. In sum, the present article aims to equip demographers and social653

scientists with an additional tool for studying the interplay of genes and environment, one that654

captures a broader range of how these interactions play out in applied settings. As cohort stud-655

ies make polygenic scores available to applied researchers, our paper suggests complementing the656

mPGS scores they are currently releasing with scores aimed at capturing genetic contributions to657

plasticity.658
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Tables797

Table 1: What type of moderation do recent gene by environment studies examine?
The table presents a (non-exhaustive) list of recent gene by environment studies that use polygenic
scores as the measure of genotype. With the exception of the study in gray, all study outcome
moderation, or how the impact of an environmental trigger or bu↵er on an outcome varies by an
individual’s genetic propensity towards that same outcome.

Study Outcome Environment PGS used to examine
moderation

Barcellos et al.
(2018)

BMI Education reform BMI

Liu and Guo (2015) BMI Childhood and adult SES BMI
Amin et al. (2017) Educational attainment Educational attainment BMI
Trejo et al. (2018) Educational attainment;

job status
School SES; school strat-
ification; environment-
agnostic heterogeneity
in school-level random
slopes on PGS

Educational attainment

Schmitz and Con-
ley (2017)

Educational attainment Veteran status (instru-
mented with Vietnam
draft lottery)

Educational attainment

Herd et al. (2019) Educational attainment Gender/cohort Educational attainment
Robinette et al.
(2019)

Type II diabetes Neighborhood disorder Type II diabetes

Domingue et al.
(2017)

Depressive symptoms Spousal loss Subjective wellbeing; de-
pression

Halldorsdottir et al.
(2019)

Depression Childhood abuse Depression

Mullins et al.
(2016)

Depression Childhood stressful life
events and trauma

Depression

Papageorge and
Thom (2020)

Educational attainment Family SES Educational attainment
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Table 2: Genetic correlation results The top panel shows the between-trait correlation in
the standard levels weights. The middle panel shows the between-trait correlation in the squared
Z vPGS weights, which are generally better powered. The bottom panel shows the within-trait
correlation between: (1) the additive weights produced by the HLMM method, which are meant to
identify mean e↵ects purged of mean-variance correlations and (2) the non-HLMM vPGS.

Between-trait correlations
Trait 1 Trait 2 Rg SE

Levels
BMI Education -0.3576 0.0304
BMI Height -0.1824 0.0262
BMI NEB 0.1657 0.0466
Education Height 0.2708 0.0280
Education NEB -0.2850 0.0530
Height NEB -0.1048 0.0407

Squared Z score
BMI Education -0.1129 0.1138
BMI Height 0.0928 0.1887
BMI NEB 0.3697 0.2395
Education Height 0.3161 0.3503
Education NEB -0.1571 0.3193
Height NEB 0.0948 0.5428
Within-trait correlations with HLMM additive
Trait vPGS Rg SE
BMI Levene’s -0.4867 0.09744
BMI Sibling SD Not identified Not identified
BMI Squared Z -0.9004 0.04162
Education Levene’s -1.0709 0.0390
Education Sibling SD 0.2832 0.2552
Education Squared Z -0.8291 0.1019
Height Levene’s -0.05683 0.283
Height Sibling SD Not identified Not identified
Height Squared Z -0.8894 0.3587
NEB Levene’s 0.5181 0.0913
NEB Sibling SD 0.0989 0.2876
NEB Squared Z -0.0951 0.1515
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Table 3: Impact of education reform on health outcomes

HLMM vPGS Sibling vPGS

Body Size Body Size (Threshold) Body Size Body Size (Threshold)

(1) (2) (3) (4)

vPGS �0.073 �0.044⇤ �0.018 �0.028
(0.049) (0.018) (0.055) (0.021)

Educ16 (Instr.) �0.225† �0.110⇤ �0.231† �0.111⇤

(0.133) (0.050) (0.134) (0.051)

mPGS 0.198⇤⇤⇤ 0.126⇤⇤⇤ 0.172⇤⇤ 0.123⇤⇤⇤

(0.049) (0.019) (0.055) (0.021)

vPGS x Educ16 (Instr.) �0.017 0.027 �0.024 0.019
(0.055) (0.021) (0.063) (0.024)

mPGS x Educ16 (Instr.) 0.003 �0.087⇤⇤⇤ 0.017 �0.086⇤⇤⇤

(0.056) (0.021) (0.063) (0.024)

Constant �1.764⇤⇤⇤ �0.348⇤⇤⇤ �1.748⇤⇤⇤ �0.347⇤⇤⇤

(0.263) (0.100) (0.264) (0.100)

Observations 45,961 45,961 45,961 45,961
R2 0.061 0.026 0.054 0.023
Adjusted R2 0.061 0.025 0.053 0.022

Note: ⇤p<0.1; ⇤⇤p<0.05; ⇤⇤⇤p<0.01
†p < 0.1; ⇤p < 0.05; ⇤ ⇤ p < 0.01; ⇤ ⇤ ⇤p < 0.001
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Table 4: Impact of education reform on health outcomes

Body Size Body Size (Threshold)

(1) (2)

mPGS 0.159⇤⇤⇤ 0.106⇤⇤⇤

(0.045) (0.017)

Educ16 (Instr.) �0.234† �0.112⇤

(0.134) (0.051)

mPGS x Educ16 (Instr.) 0.005 �0.074⇤⇤⇤

(0.051) (0.019)

Constant �1.728⇤⇤⇤ �0.342⇤⇤⇤

(0.264) (0.100)

Observations 45,961 45,961
R2 0.053 0.022
Adjusted R2 0.052 0.021

Note: †p < 0.1; ⇤p < 0.05; ⇤ ⇤ p < 0.01; ⇤ ⇤ ⇤p < 0.001
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Table 5: Genetic moderation of reform’s impact on educational attainment

HLMM vPGS, Education Outcomes

Left School 16 or later Certification O-levels or CSE A-levels
Controls? N Y N Y N Y N Y

(1) (2) (3) (4) (5) (6) (7) (8)

vPGS �0.059⇤⇤⇤ �0.040⇤⇤⇤ �0.063⇤⇤⇤ �0.044⇤⇤⇤ �0.008† �0.007 �0.055⇤⇤⇤ �0.037⇤⇤⇤

(0.003) (0.005) (0.003) (0.005) (0.004) (0.007) (0.004) (0.006)

Post Reform 0.153⇤⇤⇤ 0.143⇤⇤⇤ 0.053⇤⇤⇤ 0.053⇤⇤⇤ 0.058⇤⇤⇤ 0.059⇤⇤⇤ �0.005 �0.005
(0.008) (0.008) (0.008) (0.008) (0.011) (0.011) (0.009) (0.009)

mPGS 0.022⇤⇤⇤ 0.021⇤⇤⇤ �0.0002 0.021⇤⇤⇤

(0.005) (0.005) (0.007) (0.006)

vPGS x Post Reform 0.048⇤⇤⇤ 0.033⇤⇤⇤ 0.036⇤⇤⇤ 0.031⇤⇤⇤ 0.035⇤⇤⇤ 0.034⇤⇤⇤ 0.001 �0.003
(0.004) (0.007) (0.005) (0.007) (0.006) (0.010) (0.005) (0.009)

mPGS x Post Reform �0.017⇤ �0.005 �0.001 �0.003
(0.007) (0.007) (0.010) (0.008)

Constant 0.779⇤⇤⇤ 0.478⇤⇤ 0.809⇤⇤⇤ 0.004 0.557⇤⇤⇤ 0.247 0.253⇤⇤⇤ �0.242
(0.004) (0.147) (0.005) (0.156) (0.006) (0.206) (0.005) (0.178)

Observations 25,690 25,690 26,012 26,012 26,012 26,012 26,012 26,012
R2 0.098 0.117 0.055 0.072 0.019 0.027 0.016 0.025
Adjusted R2 0.098 0.115 0.055 0.070 0.018 0.025 0.016 0.023

Note: †p < 0.1; ⇤p < 0.05; ⇤ ⇤ p < 0.01; ⇤ ⇤ ⇤p < 0.001
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Figures798

Fig. 1: Significance of mPGS and plasticity scores in predicting levels of a trait The
figure shows results from the regression specified in Equation 1 in the HRS (left panel) and UKB
test set (right panel). The top panel shows that, as expected, the levels PGS predict levels of
an outcome (though the relationship with fertility in HRS is weaker than for height, BMI, and
education). Moving downwards, across both samples, the Squared Z plasticity score performs the
least well in that the plasticity score significantly predicts levels of an outcome for all outcomes
except for number of children ever born. The Sibling SD score and HLMM perform best in the
HRS test set
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Fig. 2: Relationship between vPGS and within-person variability in BMI: matched
N sample The figure, focusing on the sample where we restrict the estimation sample size for all
scores to be equivalent to the estimation sample size for the sibling SD vPGS, shows two versions
of the within-person variability analysis: a version with raw BMI over time and a version where
BMI is detrended according to age patterns. The figure shows a general correlation between a
respondent having a higher vPGS score and them having more variability in their BMI.

HLMM dispersion

Levene's

Sibling SD

Squared Z

−0.05 0.00 0.05 0.10
Relationship with within−person

variability in BMI

Detrend by age Raw

Fig. 3: Interaction between mPGS and Instrumented Educ16 on Body Size outcomes
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Fig. 4: Interaction between HLMM polygenic score for plasticity and Post Reform on
Educational Outcomes
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