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ABSTRACT KEYWORDS

To keep housing affordable, the City of New York has implemented
rent-stabilization policies to restrict the rate at which the rent of
certain units can be increased every year. However, some landlords
of these rent-stabilized units try to illegally force their tenants out
in order to circumvent rent-stabilization laws and greatly increase
the rent they can charge. To identify and help tenants who are
vulnerable to such landlord harassment, the New York City Public
Engagement Unit (NYC PEU) conducts targeted outreach to tenants
to inform them of their rights and to assist them with serious
housing challenges. In this paper, we! collaborated with NYC PEU
to develop machine learning models to better prioritize outreach
and help to vulnerable tenants. Our best-performing model can
potentially help TSU find 59% more buildings where tenants face
landlord harassment than the current outreach method using the
same resources. The results also highlight the factors that help
predict the risk of experiencing tenant harassment, and provide
a data-driven and comprehensive approach to improve the city’s
policy of proactive outreach to vulnerable tenants.
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learning approaches.
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1 INTRODUCTION

In New York City (NYC), one of the world’s most populous and
dense cities, housing availability and affordability is a major concern
for residents and city government. From 2009 to 2017, rents rose at
twice the rate of wages [22], making it more difficult for New York
City tenants to afford housing.

To help ensure the long-term existence of affordable housing, the
New York State and New York City governments have implemented
housing policies, such as rent stabilization, which restricts yearly
rent increases, and a voucher program, which subsidizes rent for
low-income households. Currently, the city has more than 1 million
rent-stabilized housing units [6, 7].

However, the landlords of rent-stabilized units often want to
"destabilize" these units [24] by forcing tenants out: that is, they
want tenants to move out, voluntarily or through an eviction, to
force a larger allowable rent increase that eventually places the
unit beyond the purview of rent-stabilization policies. While the
overall number of housing units has increased, the number of rent-
controlled and rent-stabilized apartments in New York City has
decreased by 146,902 units since 1991 [6, 7]. Some of this turnover
is the result of landlord harassment, which can take the form of
refusal to make essential repairs, illegally locking tenants out of
units they have a right to live in, and other tactics aimed at inducing
tenant turnover [19].

To help tenants vulnerable to these tactics, in 2015, New York
City’s Mayor’s Office established a Tenant Support Unit (TSU),
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a team of outreach specialists from the Mayor’s Public Engage-
ment Unit (PEU). TSU specialists proactively canvass door-to-door
throughout the city and hold events with local community partners
to find tenants in need of assistance with housing challenges. Once
they identify a case of harassment or other serious housing chal-
lenges, specialists further case-manage tenants to help them access
a range of city services, such as emergency repairs, vouchers and
free legal assistance.

Canvassing to find tenants in need is a time-sensitive process—
TSU’s goal is to reach tenants before their problems progress to more
serious cases of eviction or other forms of displacement. Currently,
TSU identifies buildings that have rent stabilized units in 20 ZIP
codes prioritized as part of anti-harassment protection legislation.
To locate the buildings, TSU uses an internal address database and
canvasses every apartment unit in these buildings. PEU team leads
in each borough send specialists to each area until all apartment
units have been attempted. Once an area is completed, canvassing
begins again in an adjacent area. There are about 150,000 rental
units in the 20 ZIP codes where funding is available for TSU to
help tenants in need, but TSU specialists only have the resources to
knock on an average of 5,000 units a month. Our work is focused
on helping TSU prioritize locations where tenants face a high risk
of harassment to help TSU specialists better plan their outreach
and serve more tenants in need proactively.

In collaboration with TSU, the Data Science for Social Good
Fellowship program at University of Chicago deployed machine
learning models to help predict which buildings house tenants who
face a high risk of harassment by their landlords. By analyzing
historical outreach results and building and neighborhood charac-
teristics, we showed that a Gradient Boosting model successfully
outperformed the current outreach practice. Specifically, our model
increased the precision relative to our baseline — the unit’s expert-
driven success rate — by 59%, helping TSU better allocate their
outreach resources to people most in need and improving their
efficiency at helping vulnerable tenants. In addition, we also pro-
vided analyses of feature importance, helping the team understand
which attributes of buildings and neighborhoods contribute to the
likelihood of rental tenant harassment.

In summary, this paper provides the following contributions:

(1) This paper contributes to the prediction of landlord ha-
rassment risk by deploying various machine learning mod-
els with a direct measure of landlord harassment and well-
defined evaluation metrics.

(2) Our model shows significant improvement at identifying
buildings at high harassment risk over TSU’s current ap-
proach.

(3) In addition to yielding risk scores for tenant harassment, this
paper also highlights features that can potentially be used as
“early warning signs* of future harassment or proxy markers
for the presence of harassment.

2 RELATED WORK
2.1 Housing Assistance for Low-income
Renters

Social science research documents the negative consequences of
housing instability and shows the mixed effects of rent-stabilization
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and other rental assistance policies on combating this instability. On
one hand, such assistance may reduce homelessness [23] and rental
burden, increasing financial security (such as to afford health care)
among low-income households [16]. On the other hand, suppressing
a unit’s rent at a level below the rate it would receive on the open
market can result in lower-quality housing [12, 21] and creates
incentives for landlords to use legal loopholes, such as those that
allow landlords to increase the rent each time a tenant moves out,
to eventually convert the units to market rate [3].

Thus, policymakers face a dilemma: how can they use policies
such as rent stabilization (which sets an upper limit on the rate
at which the rent can be increased annually) to promote access to
affordable housing, while also ensuring that tenants renting in these
affordable units live in habitable conditions and do not face landlord
harassment aimed at getting them to move out? The bulk of existing
research focuses on the former part of the dilemma (the effect of
policies on housing access). Less research investigates strategies to
ameliorate potential byproducts of rent regulation policies.

Our work, by predicting where tenants in affordable units are
likely to experience landlord harassment, fills an important gap.
The Mayor’s Office of Data Analytics (MODA) [17] also has studied
data-driven protection from landlord harassment, and our project
builds upon their efforts in several ways. First, through this pa-
per we had a more direct measure of landlord harassment. While
MODA [17] defined harassment using a proxy variable (i.e., the
number of rent-stabilized units a building lost during a particu-
lar time period), TSU’s historical canvass data allowed us to use
harassment cases tenants reported during outreach. Second, we
estimated many different models and evaluated model performance
with well-defined metrics. Finally, the different machine learning
models we estimated allow us to use significantly more features
and to learn complex relationships — i.e., both linear and nonlinear
relationships— between these features and a building’s observed
harassment risk.

2.2 Machine learning for Social Good

In recent years, machine learning has been widely applied to prob-
lems of social good and to inform public policies. For example, it
has been introduced to forecast issues of criminal justice [4], de-
tect online rumors on social media [25], identify political bias in
text [11], map wealth and poverty in given areas [5, 10] and even
facilitate medical diagnoses [14].

In particular, government agencies have used machine learning
to inform better allocation of resources. For example, random forest
and logistic regression have been used to identify students at risk of
not graduating, so that school districts can prioritize their limited in-
tervention resources to help these students [15]. Machine learning
models can also help government inspectors prioritize inspections
to high-risk units. These efforts include using Yelp reviews to help
a government agency target hygiene inspections [9, 13] and pre-
dicting which buildings face a high fire risk to help the New York
City Fire Department narrow its inspection focus [2, 18].

However, far less work has been done to explore how machine
learning can inform housing policies, except for making policy
recommendations to reduce home abandonment in Mexico [1] and
detecting home locations by real life photos on social media [26]
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Table 1: Data sources summary

Dataset Records # | Time Window
(Internal) Knock attempts 100K 2016.4 - 2018.2
(Internal) Case records 8K 2015.6 - 2018.2
(Internal) Case issues 30K 2015.6 - 2018.2
(Internal) Building address 1M N/A

(External) ACS (tract-level) 2000 2013 to 2016
(External) PLUTO buildings M till 2018.1
(External) HPD violations M till 2018.6
(External) Hous. Court litigation | 150K till 2018.6
(External) Subsidized housing 16K till 2016

or by tweets [20], as well as MODA’s study mentioned in the previ-
ous section [17]. In this paper, we highlight a new application by
deploying machine learning methods to predict which buildings
house tenant(s) facing a high risk of harassment by their landlords.

3 PROBLEM FORMULATION

We formulate the tenant harassment risk prediction as a binary
classification problem. For each building, our model produces a
risk score for whether there will be at least one harassment case
identified if the TSU specialists canvass the building in the next
month. Our model answers the question: Will there be any cases of
harassment in a given building in the next month?

This formulation leads to two further decisions: 1) what time
horizon to predict for (e.g., a harassment case within the next week,
next month, or next year) and 2) the unit of prediction (e.g., mod-
eling which residential unit faces a high harassment risk versus
modeling which buildings contain tenants who face a high harass-
ment risk). Both of these questions need to be answered reflecting
the operational and policy constraints of our partner, the Tenant
Support Unit at NYC.

For 1), we use a month as the time horizon for our prediction
because TSU specialists typically plan their work at the beginning
of each month. Monthly prediction thus matches their outreach
planning process.

For 2), we focus on each building rather than each tenant for two
reasons. First, TSU conducts a building-level outreach process. Out
of concern for equity among tenants, TSU specialists believe they
should knock on every single unit in a building once they enter.
Second, the majority of information in both TSU internal databases
and public available datasets describes buildings rather than units.
Therefore, it’s both more feasible and more important to know the
building-level risk of harassment.

4 DATA

To explore variables that can help us predict which buildings may
be at risk of harassment, we combined data from multiple sources.
Table 1 summarizes the information presented in the data. Details
are described in the following sections.

4.1 TSU (Internal) Data

4.1.1 Building address. To locate residential units for canvassing,
TSU uses an internal database (which was built using a publicly
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available dataset) that contains addresses for all the residential
buildings in NYC. For each building, the database records the num-
ber of units and location information such as address, building
identifier number and the tract it belongs to, making it convenient
to join with data from other spatial sources.

4.1.2  Knock attempts and case records. During canvassing, TSU
specialists knock on every apartment unit in the targeted building(s).
If a tenant answers the door, they talk to the person about whether
he or she is facing harassment. These activities are recorded at the
unit level in knock attempts and case records, respectively. Each
of the records describes the location of the unit, the date it was
canvassed, the specialist team that did the canvassing, and the
result of the attempt (i.e., knocked, answered, and case identified).
The case database also records the source of the case, allowing us
to know which cases came from canvassing as opposed to other
sources, such as referrals. Case records contain information about
our outcome variable — whether or not there was at least one case
of harassment identified in the building.

4.1.3 Case issues. Once a harassment case is identified, such as a
landlord refusing to do essential repairs, the specialists will follow
up with the case and separately record each issue related to the
housing unit in the case issues database. The specialists can then
connect the tenants to relevant assistance resources, such as city
services or legal support.

Figure 1 shows the TSU specialists’ canvassing process and our
definition for having a case identified (i.e., the label).

Figure 1: Canvassing process with our definition of the out-
come label.

TSU team lead selects
buildings to canvass

TSU specialists go to the
building

]

TSU specialists get access
to the building

}

TSU specialists knock on
all doors in the building

|

Tenant opens the door

|

Specialist identifies no
case: Label =0

Specialist identifies case:
Label = 1

4.2 Public (External) Data

While the internal canvassing records are critical for understand-
ing where harassment occurs, external data are also important to
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capture information about buildings not canvassed by TSU yet or
longer term historical data before TSU began their outreach activi-
ties. TSU’s records focus on violations the agency finds based on
outreach that began in 2015. External data provides both an ex-
panded time window — which buildings face high rates of landlord
issues documented by agencies that predate TSU’s existence? —
and a lens into the characteristics of buildings and neighborhoods
where TSU has historically detected cases.

4.2.1  American Community Survey (ACS). To gain insight into the
demographics of tenants whom TSU specialists conduct outreach
to, we collected American Community Survey 5-year estimates
from 2013 to 2016 at the census tract level. The ACS data contain
demographic information such as racial composition, average in-
come, work hours, age distributions and other demographics of the
census tract in which a building is located.

4.2.2  Primary Land Use and Tax Lot Output (PLUTO). The PLUTO
records describe attributes of each building, such as its renova-
tion history, its building class (e.g., is it a high-rise or a walk-up
apartment?), the number of floors, and its recorded owner. We in-
troduced PLUTO data into our model because we believed building
information could shed light upon tenant harassment. For example,
landlords often own multiple buildings — if TSU canvassing finds
harassment at one of a landlord’s buildings, that same landlord
might be engaging in harassment in other buildings he or she owns.
In addition, if a building has been recently renovated, this could
be a signal that the landlord is hoping to displace current tenants
and lease the building’s units to higher-paying tenants. Therefore,
we believe that PLUTO features should improve our predictions of
harassment.

4.2.3 Department of Housing Preservation and Development (HPD)
violations. The HPD issues violations when, after sending inspec-
tors to a unit in response to a complaint, they find evidence of a
Housing Code violation. This database contains recorded housing
violations, which range from more minor, non-hazardous violations
to severe, immediately hazardous violations (e.g., no heat or hot wa-
ter, a rodent infestation, lead paint). These housing violations could
be indicators of rental harassment since some reflect extreme land-
lord neglect of living conditions. Mr. Sidibe, a New York resident,
is a recent example reported in The New York Times. He was first
hurt by a broken hot water tap and then was improperly evicted
while he was recovering in the hospital [3]. Therefore, we hope to
use the HPD violation records to improve the predicted harassment
risk of a given building.

4.2.4 Housing court litigation. Similar to the HPD violations, hous-
ing court litigation can help the model by integrating historical
violations. It shows the cases that city agencies levy against an
owner when he or she fails to properly address a violation, such as
a case legally compelling an owner to fix the heat and hot water in
a unit.

4.2.5 Subsidized housing. This database contains building-level
information of 53 different subsidy programs a building might par-
ticipate in, such as the low-income affordable marketplace program
and the HPD mixed income program. The subsidy data complement
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other building-specific characteristics in the databases described
here.

5 METHODS

To predict which buildings are likely to house tenants susceptible
to experiencing harassment in the next month, we experimented
with Random Forest (RF), Logistic Regression (LR), Decision Trees
(DT), and Gradient Boosting (GB), all of which are implemented
with scikit-learn. We used the data described above to extract nu-
merous features of buildings: in total we used 92 original features
(before further processing such as reformatting to one-hot vectors)
generated from our data sources.

5.1 Feature Generation

We generated features based on our discussion with experts at the
PEU as well as past research on landlord-tenant issues.

5.1.1 Building-level features. Building-level features mainly in-
cluded dynamic features of what harassment-related behaviors have
occurred before and static features of basic building characteristics.
For dynamic features, we first generated behavioral features by ag-
gregating the canvassing activities and the results at the building
level. To predict harassment risk in the upcoming (next) month, for
example, we counted the number of knocks, doors opened and case
identifications in the current (this) month in a given building. We
also calculated the number of issues associated with these cases
for each type (e.g., repair, legal) separately. Apart from the count,
we created binary variables that indicate whether there were any
knocks, doors opened, or case identifications in the current (this)
month. In addition to recording activity in this month, we aggre-
gated all the prior historical records (until this month) to assess the
predictive utility of aggregate measures.

Similarly, we created the HPD violations and the housing court lit-
igation features. The records are aggregated to indicate the number
or existence of violations and litigation, both in this month and all
the months until now. To further break down the type of violations,
we included features that describe the number of violations for
each severity class. We also grouped housing court litigation by
litigation type (such as heat and hot water litigation versus tenant
actions against owners).

For static features, ZIP codes and borough information were gen-
erated from the internal building address database. We also included
dummy variables describing each canvassing team to account for
potential variation between the individual specialists responsible
for given buildings or areas.

We further extracted basic building characteristics from PLUTO,
such as ownership features like owner name and owner type, as
well as building renovation features including the year of each
renovation. We also considered the size of the building (indicated
by the number of floors and number of residential units), the class
of buildings (identifying whether the building was made of brick
and whether it has an elevator), and the assessed total value of the
building.

Additionally from the subsidized housing database, we generated
a feature to describe whether the building is included in a subsidy
program or not.
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5.1.2  Tract-level features. At the tract level, we generated demo-
graphic features by extracting records from the American Commu-
nity Survey database. PEU managers suggested local areas with a
certain demographic composition of tenants might contain build-
ings with more harassment. For example, tracts with a higher per-
centage of low-income tenants might be more likely to have both a
higher concentration of tenants living in rent-stabilized units and
a higher concentration of tenants who, due to a lack of awareness
of city resources, have unmet needs for help with landlord issues.
Our features contain measures of racial demographics, measures
of when residents work outside of the home (which affects the
tenants’ ability to answer the door during the main TSU canvassing
hours), and measures of income insecurity, such as receipt of public
assistance like Supplemental Security Income (SSI).

We cleaned (i.e., preprocessed such as removing duplicate records)
all the data mentioned above to generate the features and match
data from different sources by location indicators. We used extrap-
olation to impute missing data in the features (not the label), such
as imputing missing records in 2018.2 with data from 2018.1. We
further used the min-max scaler in scikit-learn to normalize contin-
uous features, especially for use in regularized logistic regression
models.

5.2 Splitting Data into Training and Testing
Sets

To evaluate models with temporal cross-validation, we followed the
rule of time-dependent knowledge restriction to temporally split
the data into training and testing sets. We needed to ensure that
the knowledge in the future (i.e., the testing set) does not inform
predictions in the past (i.e., the training set). For example, in one
data split, if we wanted to use data until end of March 2017 (i.e.,
testing features) to predict the risk of harassment during April
2017 (i.e., testing label), the training set should contain features
only until end of February 2017. The training label would then be
generated using cases from records during March 2017. Figure 2
shows an example of these training and testing splits, with each
row representing one split.

Figure 2: An example illustrating training and testing splits.

Test Label

| Train Feature

|
|
|
Train Label I I
|
|

Test Label

March 2018

March 2016 Time

5.3 Model Evaluation

5.3.1 Metrics. We used variations of standard metrics to evaluate
the model performance: precision and recall at highest predicted
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risk buildings with a total of k residential units based on the out-
reach capacity. We select evaluation metrics that have enough flex-
ibility when applied to labels with missing values since many of
the buildings we predict at risk will not have been canvassed his-
torically (since the goal of this project is to suggest new buildings
to canvass) and we need to evaluate our models in that setting.

To help TSU plan their outreach, at the beginning of each month,
we will use the prediction model to recommend a list of buildings
with the highest predicted risk of harassment, adding up to k resi-
dential units (hereafter denoted as top k, with k limited to TSU’s
monthly outreach capacity — the number of units they are able to
knock on for outreach in a given month).

We want to evaluate the performance of the model according to
the true labels of buildings in this prioritized list. Our test set (that
we predict on) contains three of types of buildings:

(1) buildings with true positive labels, where TSU knocked and

identified case(s)

(2) buildings with true negative labels, where tenant(s) opened

the doors when TSU canvassed, but no cases were identified

(3) buildings missing labels, where (i) TSU specialists did not

go to the building (no knocks) or (ii) no doors were opened
when TSU canvassed the building (knocks but no opens).
Traditional precision and recall metrics are not very informa-
tive in this case when the true labels of buildings predicted
as positive might be missing.

We built upon previous literature [15] focusing on resource allo-
cation in scarce resource settings and used precision and recall at
top k as the evaluation metrics. We denote N ,;; as total number of
buildings in the top k building list, Ny ;,, as the number of buildings
labeled as positive in the top-k list and Ny ;,, as the number of build-
ings labeled as negative in the top-k list. Ny ,, refers to the number
of unlabeled buildings. Obviously, Nk, qi1 = N, 1p + Ni, in + Nk, u-
As shown by Equation 1, precision at the top k is the proportion of
buildings that are labeled as positive (i.e., resulted in true cases) in
the top k building list. Recall at the top k represents the proportion
of buildings with true positive labels (i.e., with cases identified) that
the model captures in the top k list (as shown by Equation 2). While
precision measures the efficiency of the model, recall measures
model coverage. Figure 3 shows an example of calculating precision
and recall at top k.

# of true positive labels in top k
# of total labels in top k

_ Negp

N+ Niin

precision at top k =

# of true positive labels in top k

recall at top k =
P # of true positive labels in testing set

B N, 1p
" #of true positive labels in testing set

@)

5.3.2  Choices in determining the top k list. First, to determine Kk,
TSU indicated that they would like to keep half of the capacity to
their own expert-selected buildings so that TSU specialists could
also help residents who lived in buildings outside the top k list.
Therefore, each month, we set k as half of TSU’s canvassing capacity
in a given month (k = 3,000, approximately).
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Figure 3: Example of metrics calculation — if a half of TSU
capacity k = 200, then precision = % and recall = %

Building Prediction | # of | Predicted True
ID Score units label label
id1112 0.8 153 1 1
id9822 0.79 23 1 1
k=0.5*TSU .
capacity id9713 0.7 67 1 0
id1751 0.64 11 0 1
id4368 0.48 28 0 0
id4572 0.46 150 0 1

[Top-k list for TSU to canvass]. Second, to suggest a list of the
buildings for TSU to canvass, we first rank all residential buildings
by predicted risk scores and then take the top ones that add up
to contain k (apartment) units since the TSU capacity is based on
the number of units and we are predicting at the level of buildings.
Note that if k is in between two buildings in our list, we include
the entire building with at least one unit in the top-k list.

[Top-k list for model performance evaluation]. Third, to evaluate
model performance, we generated the top-k list of buildings by
only including the labeled buildings. We ranked labeled buildings
by the predicted risk of harassment, and marked the top-k-units
buildings as positive. We didn’t deploy the k cut-off on all build-
ings since the top-k list of all buildings did not contain enough
labeled data to make the precision scores reliable. On average, TSU
canvasses about 300 buildings per month out of a total of 6,437
in their outreach area, which covers < 5% of all buildings. It was
highly likely that most, if not all, of the (previously canvassed) 300
buildings fell out of the top-k list, leading to few labeled data in
top-k list. In fact, about 20% of the top-k lists generated by each
model in each test month contained no labeled building, with the
rest 80% of models only include a few labeled data. For example, a
Random Forest model proposed 19 buildings in the top-k building
list, with only one of them observed by TSU. The precision would
be 1 if TSU identified case(s) in this building and 0 otherwise. This
challenges our confidence in using these precision and recall met-
rics to represent the model performance. We thus chose to use the
labeled data in determining the top k list for model performance
evaluation. This is typical in problems with missing labels and we
recommend to conduct a field trial with proactive canvassing on the
previously not canvassed buildings to further validate the model
on both labeled and unlabeled data.

6 RESULTS
6.1 Predictive Performance
6.1.1 Baseline: TSU’s current outreach method. TSU currently uses

a simple approach to plan its outreach in the targeted 20-ZIP-codes
areas. TSU specialists systematically go block by block attempting
to enter every building where there is at least one rent-stabilized
unit. A list of buildings to attempt is assigned via a custom-built
canvassing app loaded on an iPad.
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Figure 4: Model performance over time (in training stage).
X axis represents the time period (month) and Y axis repre-
sents the precision scores of models in the month. The figure
shows that the baseline has been varying across months and
our models generally performed better than the baseline.

Algorithm
DecisionTree

4 GradientBoosting
LogisticRegression
RandomForest

baseline)

0.75-

Precision

(colors = models; red

Aug-16 _
Sep-16
Oct-16
Nov-16 _
Dec-16 _
Apr-17 _
Aug-17 _
Sep-17 _
Oct-17 _
Nov-17

Dec-17 _

et

6.1.2  The performance of our models. Our final models were trained
on data from July 2016 to December 2017 and were tested on out-
reach records from January 2018. We further split the training data
into 17 folds as illustrated in the previous section to conduct tem-
poral validation.

Figure 4 shows the performance of every model on each data
split during the training stage. The TSU baseline is represented by
the red dashed line. The machine learning models performed better
than the baseline by 36% on average.

The figure also shows that the effectiveness of outreach efforts
by TSU in terms of found cases of tenant harassment varies over
time as well. Therefore, to better interpret how much better our
model performed than the baseline in each data split, we calculated
the ratio of model precision to baseline precision (hereafter named
as precision ratio).

To select the best performing model, we first took the average
precision ratio score of all data splits and narrowed down to models
that had precision ratios ranked in the top 10. Because we want
the model that TSU uses to not only exhibit high average precision
but also exhibit high stability in performance, we incorporated the
standard error of the precision ratio scores into the evaluation of a

> . recision mean
model’s performance by calculating: P

precision std/+/# of precisions

The best model to predict whether there will be at least one
case in a building next month was a Gradient Boosting classifier
with 100 estimators. In our test month (February, 2018), TSU was
able to inspect 312 buildings of 7,374 residential units, covering
about 4.85% of all buildings. Therefore, we set k = 3, 687 units to
generate the top k list for evaluation. Table 2 shows how our model
performed in terms of false positives, false negatives, true positives
and true negatives. Our model was able to identify about 59% more
high-risk buildings than the baseline (with a precision score of 0.25
in the test month).
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Figure 5: Precision and number of labeled data at each k pro-
portion for the Gradient Boosting model.
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Figure 6: Recall curves at each k proportion for the Gradient
Boosting model.
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In Figure 5, the precision scores of the building-level prediction
at different levels of k is represented by the blue line, with X axis
representing the proportion of buildings at k (i.e., Ny 477/ Total
number of buildings). We also plotted an orange line to visualize
the number of labeled data at each k (i.e, Ng ;5 + Nk, 1), which
shows the number of (labeled or successfully canvassed) buildings
supporting the precision calculations. Since TSU only inspected
about 300 buildings per month and left most buildings unlabeled,
this supporting number at k helps us assess our confidence in the
precision score at k.

In addition to precision, we calculated two measures of recall:
recall of the total count of cases across buildings and recall of build-
ings with any case. Figure 6 shows that recall of cases (represented
by the yellow-green line) was in general higher than the recall of
buildings with any case (represented by the orange line), indicat-
ing that our model was good at predicting buildings with a larger
number of cases rather than buildings with only one case.

Since both precision and recall measures are relying on labeled
data, we wanted to understand if our overall list of high risk build-
ings was good at ranking high risk buildings above low risk build-
ings. In addition to recall on the labeled positive examples (orange
line), we calculated recall on the labeled negative examples (build-
ings with no cases) using all buildings as the denominator (purple
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line). The intuition is that a good ranked list will have more (la-
beled) positive examples than negative examples at the top of the
list and vice versa at the bottom of the list. The gap between recall
on positive examples and recall on negative examples in Figure 6
allows us to see this was actually the case. The orange line goes
up steeply at the beginning (more positive examples) and the pur-
ple line goes up steeply at the bottom of the list (more negative
examples) giving us confidence in the ranking performance of our
model.

Table 2: Confusion matrix of the best performing model.

Actual True Actual False
Predicted True 33 50
Predicted False 46 183

6.2 Interpreting the Models: Feature
Interpretation

Figure 7 shows the top 20 features that have the highest feature
importances in the best performing Gradient Boosting model.

6.2.1 Tract-level demographic features. From the figure, we see
that most features in the top 20 feature list were generated from
American Community Survey data, which reflects the demographic
characteristics of residents in the tract in which a building is located.
For example, measures of income insecurity were important in
predicting harassment — these included the proportion of people
receiving Supplemental Security Income (SSI) in a given tract (Tract
Percent With Supplemental Security Income SSI in figure 7) and the
percentage of households earning less than $10,000 per year (Tract
Income Percent Less Than 10000 in figure 7). These features might
be important because they may reflect unmet need — that is, areas
where people are both particularly vulnerable to illegal tactics by
landlords and where they also may, prior to TSU’s visit, have the
most difficulty navigating city services that can help. In addition to
the income variables and, more interestingly, 8 of the 20 top features
were indicators for the hours that a tract’s residents work outside
the home. For example, the feature, Tract Working Hours Percent
800Am to 829Am, represented the proportion of people who usually
leave their apartment to work between 8:00AM and 8:29AM. These
features could be important for two reasons — first, they might serve
as additional indicators of socioeconomic status (e.g., lower-income
individuals might face less standard work schedules); second, they
might reflect which tenants are home to answer the door when
TSU specialists go canvassing on weekdays and weekends.

6.2.2 Building history and value features. The figure also shows
that building-level indicators, such as the total number of HPD
violations in a building up until the given month and the total
monetary value of a building (generated from PLUTO dataset) are
informative in predicting harassment risks. These observations
provide support to the idea that external information, including a
building’s history of violations as well as the physical and economic
attributes of a building (i.e., how much is a building worth?), is
valuable in predicting whether there will be at least one case of
harassment in the building next month.
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Figure 7: Feature importance from the gradient boosting model. We plot the 20 most important features to understand the top

predictors that help us identify buildings of high risks.

Number of Residential Units-

Building Assessed Total Value-

Latitude-

Tract Working Hours Percent 800 Am To 829 Am-
Tract Working Hours Percent 500 Am To 529 Am-
Longitude-

Tract Percent With Supplemental Security Income SSI-
Tract Working Hours Percent 1200 Pm To 359 Pm-
Tract Working Hours Percent 630 Am To 659 Am-
Tract Median Age-

Tract Working Hours Percent 1200 Am To 459 Am-
Hpdviols Count Ever-

Feature

Tract Race Percent Asian Alone-

Tract Income Percent 10000 To 14999~

Tract Working Hours Percent 730 Am To 759 Am-
Tract Working Hours Percent 900 Am To 959 Am-
Tract Race Percent White Alone-

Tract Working Hours Percent 700 Am To 729 Am-
Tract Income Percent Less Than 10000-

6.2.3 Building location features. In addition, the model identified
the longitude and latitude of a building as important features. This
indicates that high-risk buildings are perhaps clustered in specific
locations. To highlight this clustering feature, we predicted the
risk of each building with our best-performing model. We further
separated buildings into different levels of risk, with high risk repre-
senting buildings with the highest 33.33% risk scores, low risk rep-
resenting buildings with the lowest 33.33% risk scores and medium
risk representing the rest. We plotted each building according to its
point location, with high-risk buildings in red, medium-risk build-
ings in yellow and low-risk buildings in green (see Figure 8). The
map highlights clusters of high-risk buildings in Manhattan and
the Bronx, with low-risk buildings dispersed throughout Brooklyn,
Queens and Staten Island. This finding suggests that in order to
balance canvassing efforts across boroughs, we would need to sep-
arately rank buildings and provide a high-risk building list for each
borough when deploying the model in practice.

6.2.4 Building size. While these features mentioned above indi-
cate that the model took advantage of information in the data, the
high importance of the Number of Residential Units shows that our
problem formulation — predicting any case in a building — leads us
to identify buildings with many residential units. These buildings
have a higher “denominator” of tenants at risk of harassment to
generate the label of a single case in a particular month. For the test
month (Feb, 2018) in particular,buildings predicted to have high risk
of harassment on average contained 70 units per building, which
was about 3 times as many as the average size of all buildings in the
targeted area. Figure 8 further highlights the correlation between
a building being larger and a building being identified as higher
risk: buildings with larger numbers of units (indicated by marker
size) were more likely to be predicted as buildings of high rental
harassment risk (indicated by color of red). Therefore we defined
another problem formulation to try and standardize a building’s
count of cases by the number of tenants who might have a case.

6.3 Reformulation: Predicting case per unit
ratio above a threshold

Our reformulated problem uses the label — hereafter called the any-
case label — defined as follows: Y € {1 = any case, 0 = no case} in
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Figure 8: Map of buildings predicted as different risk levels.
Each point represents a building: high risk (red), medium
risk (yellow), low risk (green). Manhattan and the Bronx
had most of the high-risk buildings. Low- and medium- risk
ones were mainly spread out among Brooklyn, Queens and
Staten Island. The marker (i.e., circle, triangle, square) size
reflects the # of units in the building.
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building i in month m. What we call the threshold label constructed
a binary label using a two-step procedure: first, we calculated the
ratio of cases in a building per number of units; second, we con-
structed the binary label as follows: Y € {1 = ratio > threshold, 0 =
ratio < threshold} in building i in month m. The results we present
focus on buildings with a ratio in the top 10% of the training set.
We used the same procedure as in section 6.1 to select the best
performing model for the threshold label. The best-performing
model (a Gradient Boosting classifier) identified 14% more buildings
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Figure 9: Feature importance from the best-performing threshold model. We plot the 20 most important features to understand
the top predictors that help us identify buildings of high risks.
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Figure 10: Precision and number of labeled data at each pro-
portion of buildings for the Gradient Boosting model using
the threshold label.
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of high case-per-unit ratio than the baseline (with precision = 0.15
in the test month). Figure 10 plots its precision scores and the
supporting number of buildings at each level of k. We found that
the threshold model successfully prioritized buildings with a higher
proportion of cases than the any-case model (with case-per-unit
ratio = 0.94 and 0.30, respectively), which means about 213% more
cases could be identified by the threshold model than the any-case
model, holding the number of units canvassed constant.

Figure 9 plots the 20 most important features from this model.
Comparing to the model using the any-case label, the best-performing
model using the threshold label put more weights on features such
as the assessed building value, the year the building was built in, the
year the building was recently renovated (i.e., Year the (second) most
recent alteration began), and number of violations HPD had ever
recorded, while it was less informed by features such as percentage
of households receiving SSI in the tract and number of units.

In fact, the model using the threshold label prioritized buildings
with smaller sizes (average number of units = 11) than the model
using the any-case label (average number of units = 70). This may
also account for the phenomenon in Figure 11: Recall of buildings
with high case-per-unit ratio was higher than average (slope > 1);
recall of cases was not as high.
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Figure 11: Recall curves at each proportion of buildings for
the Gradient Boosting model using the threshold label.
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To further understand how model of any-case label over opti-
mized large buildings, we additionally compared the two models
in two ways. First, we ranked all 6,437 buildings according to the
predicted risk score using both models and found that they were
somewhat uncorrelated. Second, for each model, we plotted the
buildings in the top-k list the model suggested TSU to canvass,
respectively (see Figure 12). Each point refers to a building with
the size of the point representing the number of units in the build-
ing. This map shows that predictions using the threshold label
(represented by orange square) top ranked more small-size and
geographically distributed buildings than predictions using the
any-case label (represented by green circle).

These findings support our assertion that if we only predict
whether there would be any case next month, the model would
be more likely to provide a list of large buildings as opposed to
buildings of high case-per-unit ratio. Depending on their goals,
policymakers and canvassing specialists might prefer one or the
other — larger buildings might allow for more efficient canvassing to
knock on doors that are more geographically co-located (supporting
the any-case label). On the other hand, the threshold label gives
tenants living in smaller buildings more of an opportunity to receive
outreach and results in a possibly more equitable outreach process.



COMPASS ’19, July 3-5, 2019, Accra, Ghana

Figure 12: Comparing of any-case label and threshold label
suggestions. Each point is a building with size representing
the # of units. Predictions using any-case label prioritize
large size buildings and were more geographically clustered.
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7 PRACTICAL IMPLICATIONS AND NEXT
STEPS PRIOR TO IMPLEMENTATION

The Tenant Support Unit hopes to efficiently find more individuals
in need of their help with fewer outreach knocks by generating a list

of buildings where tenants are most likely to experience harassment.

At the beginning of each month (when TSU team leads typically
decide which areas to visit next in the upcoming month), the model
will generate a list of buildings for each borough where tenants face
high risks of harassment. Prior to the results being used to inform
TSU’s process, the agency should conduct a field trial to validate the
predictions of our model as well as run a thorough bias and fairness
analysis. This field trial can better inform whether buildings that the
model flags as high risk are more likely to yield cases than buildings
that the model flags as low risk. If the model is able to successfully
differentiate buildings in this way, next steps should include efforts
to use the list more efficiently — that is, to not waste time travelling

across the city to canvass buildings in exact order of high to low risk.

TSU could determine clusters of buildings that have a high enough
density of units in high-risk buildings to canvass in one or over
multiple days (see Figure 13). Once these cluster areas are created,
specialists can canvass every target building in the cluster area
without unnecessary travel among exclusively high-risk buildings
across boroughs or neighborhoods.

One area of future work we want to explore is to deal with
selection bias in our labels and actively collect new labels. Since
we only have labels from buildings canvassed by TSU, and there
is some bias in how they select buildings to canvass, our model is
trained only on that data and will most likely be only confident
on predictions made on similar buildings. We want to use the field
trials to understand this bias and use the TSU team to also help
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Figure 13: Example of post-model implementation with

high-risk buildings clustered.
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improve the model by canvassing new buildings to provide more
representative labels to train our model.

8 CONCLUSIONS

We used a machine learning approach to help NYC identify build-
ings where tenants might face landlord harassment. Our model
significantly outperforms the current outreach method. The pre-
dicted risk scores can help the agency more accurately prioritize
areas of high rental harassment and better allocate their building
canvassing resources to help more tenants in need in an equitable
manner.

In addition, our model provides insights into the important cor-
relates of harassment that might be useful for researchers without
access to agency data confirming harassment, complementing ef-
forts to look at harassment using proxies like a loss in rent-stabilized
units [17]. Our feature importance results not only find the rele-
vance of building-specific attributes — for instance, the building’s
history of code violations — but also the utility of local demographic
data to highlight where tenants might face housing issues.

By comparing different formulations of the prediction problem,
with different prediction labels, we also showed that although for-
mulating the harassment prediction as a binary classification —
whether there will be any case next month — significantly increased
the precision, it might be biased towards buildings with many units.
Finally, we discussed how our model can better facilitate canvass
planning and resource allocation by clustering the high-risk build-
ings for efficient deployment and outreach.

9 ACKNOWLEDGMENTS

We greatly thank the reviewers for their time and insightful feed-
back. We also thank our partner, the New York City Public Engage-
ment Unit for their support.



Using Machine Learning to Help Vulnerable Tenants in New York City

REFERENCES

[1] Klaus Ackermann, Eduardo Blancas Reyes, Sue He, Thomas Anderson Keller,

[9

[10

(11

[12

(13

[14

= =

]

]

]

]

]

[15]

[16]

[17]

[18

[19]

[20

[21]

[22

[23

[24]

[25

Paul van der Boor, Romana Khan, Rayid Ghani, and José Carlos Gonzalez. 2016.
Designing policy recommendations to reduce home abandonment in Mexico.
In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. ACM, 13-20.

Susan Athey. 2017. Beyond prediction: Using big data for policy problems. Science
355, 6324 (2017), 483-485.

Kim Barker, Jessica Silver-Greenberg, Grace Ashford, and Cohen Sarah. 2018.
The Eviction Machine Churning Through New York City. The New York
Times (2018). https://www.nytimes.com/interactive/2018/05/20/nyregion/
nyc-affordable-housing.html

Richard Berk. 2012. Criminal justice forecasts of risk: A machine learning approach.
Springer Science & Business Media.

Joshua Blumenstock, Gabriel Cadamuro, and Robert On. 2015. Predicting poverty
and wealth from mobile phone metadata. Science 350, 6264 (2015), 1073-1076.
NYC Housing Preservation Development and United States Census Bureau.
2018. New York City Housing and Vacancy Survey. NYC Housing Preservation
Development (May 2018). https://www1.nyc.gov/site/hpd/about/nychvs.page
NYC Housing Preservation Development and United States Census Bureau. 2018.
New York City Housing and Vacancy Survey. United States Census Bureau (May
2018). https://www.census.gov/programs-surveys/nychvs.html

Drew Fudenberg and Annie Liang. 2018. Predicting and Understanding Initial
Play. (2018).

Edward L Glaeser, Andrew Hillis, Scott Duke Kominers, and Michael Luca. 2016.
Crowdsourcing city government: Using tournaments to improve inspection ac-
curacy. American Economic Review 106, 5 (2016), 114-18.

Edward L Glaeser, Scott Duke Kominers, Michael Luca, and Nikhil Naik. 2018.
Big data and big cities: The promises and limitations of improved measures of
urban life. Economic Inquiry 56, 1 (2018), 114-137.

Justin Grimmer and Brandon M Stewart. 2013. Text as data: The promise and
pitfalls of automatic content analysis methods for political texts. Political Analysis
21, 3 (2013), 267-297.

Joseph Gyourko and Peter Linneman. 1990. Rent controls and rental housing
quality: A note on the effects of New York City’s old controls. Journal of Urban
Economics 27, 3 (1990), 398-409.

Jun Seok Kang, Polina Kuznetsova, Michael Luca, and Yejin Choi. 2013. Where
not to eat? Improving public policy by predicting hygiene inspections using
online reviews. In Proceedings of the 2013 Conference on Empirical Methods in
Natural Language Processing. 1443-1448.

Igor Kononenko. 2001. Machine learning for medical diagnosis: history, state of
the art and perspective. Artificial Intelligence in Medicine 23, 1 (2001), 89-109.
Himabindu Lakkaraju, Everaldo Aguiar, Carl Shan, David Miller, Nasir Bhanpuri,
Rayid Ghani, and Kecia L Addison. 2015. A machine learning framework to
identify students at risk of adverse academic outcomes. In Proceedings of the 21th
ACM SIGKDD international conference on knowledge discovery and data mining.
ACM, 1909-1918.

Alan Meyers, Diana Cutts, Deborah A Frank, Suzette Levenson, Anne Skalicky,
Timothy Heeren, John Cook, Carol Berkowitz, Maureen Black, Patrick Casey,
et al. 2005. Subsidized housing and children’s nutritional status: data from a
multisite surveillance study. Archives of Pediatrics & Adolescent Medicine 159, 6
(2005), 551-556.

Mayor’s Office of Data Analytics. 2018. Tenant Harassment Project. (2018).
https://github.com/MODA-NYC/Project_TenantHarassment

Jesse Roman. 2014. In Pursuit of Smart. National Fire Protection Association Journal
(2014). https://www.nfpa.org/News-and-Research/Publications/NFPA-Journal/
2014/November-December-2014/Features/In-Pursuit-of-Smart

Eric T. Schneiderman. 2018. NYS Attorney General Tenant’s Right Guide. NYC
Government (2018). https://www1.nyc.gov/assets/buildings/pdf/tenants_rights.
pdf

Dan Tasse, Alex Sciuto, and Jason I Hong. 2016. Our House, in the Middle of Our
Tweets.. In ICWSM. 691-694.

Gregg G Van Ryzin and Thomas Kamber. 2002. Subtenures and housing outcomes
for low income renters in New York City. Journal of Urban Affairs 24, 2 (2002),
197-218.

Ameena Walker. 2017. In New York, Rents are Increasing Twice as Fast as
Wages. Curbed New York (2017). https://ny.curbed.com/2017/8/16/16154956/
nyc-rent-prices-wage-increase-comparison

Michelle Wood, Jennifer Turnham, and Gregory Mills. 2008. Housing affordability
and family well-being: Results from the housing voucher evaluation. Housing
Policy Debate 19, 2 (2008), 367-412.

Elvin Wyly, Kathe Newman, Alex Schafran, and Elizabeth Lee. 2010. Displacing
New York. Environment and Planning A 42, 11 (2010), 2602-2623.

Zhe Zhao, Paul Resnick, and Qiaozhu Mei. 2015. Enquiring minds: Early detec-
tion of rumors in social media from enquiry posts. In Proceedings of the 24th
International Conference on World Wide Web. International World Wide Web
Conferences Steering Committee, 1395-1405.

258

COMPASS ’19, July 3-5, 2019, Accra, Ghana

[26] Danning Zheng, Tianran Hu, Quanzeng You, Henry A Kautz, and Jiebo Luo. 2015.

Towards Lifestyle Understanding: Predicting Home and Vacation Locations from
User’s Online Photo Collections.. In ICWSM. 553-561.


https://www.nytimes.com/interactive/2018/05/20/nyregion/nyc-affordable-housing.html
https://www.nytimes.com/interactive/2018/05/20/nyregion/nyc-affordable-housing.html
https://www1.nyc.gov/site/hpd/about/nychvs.page
https://www.census.gov/programs-surveys/nychvs.html
https://github.com/MODA-NYC/Project_TenantHarassment
https://www.nfpa.org/News-and-Research/Publications/NFPA-Journal/2014/November-December-2014/Features/In-Pursuit-of-Smart
https://www.nfpa.org/News-and-Research/Publications/NFPA-Journal/2014/November-December-2014/Features/In-Pursuit-of-Smart
https://www1.nyc.gov/assets/buildings/pdf/tenants_rights.pdf
https://www1.nyc.gov/assets/buildings/pdf/tenants_rights.pdf
https://ny.curbed.com/2017/8/16/16154956/nyc-rent-prices-wage-increase-comparison
https://ny.curbed.com/2017/8/16/16154956/nyc-rent-prices-wage-increase-comparison

	Abstract
	1 Introduction
	2 Related Work
	2.1 Housing Assistance for Low-income Renters
	2.2 Machine learning for Social Good

	3 Problem Formulation
	4 Data
	4.1 TSU (Internal) Data
	4.2 Public (External) Data

	5 Methods
	5.1 Feature Generation
	5.2 Splitting Data into Training and Testing Sets
	5.3 Model Evaluation

	6 Results
	6.1 Predictive Performance
	6.2 Interpreting the Models: Feature Interpretation
	6.3 Reformulation: Predicting case per unit ratio above a threshold

	7 Practical Implications and Next Steps Prior to Implementation
	8 Conclusions
	9 Acknowledgments
	References

